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Abstract 
The use of technological tools, in the food industry, has allowed a 
quick and reliable identification and measurement of the sensory 
characteristics of food matrices is of great importance, since they 
emulate the functioning of the five senses (smell, taste, sight, touch, 
and hearing). Therefore, industry and academia have been conducting 
research focused on developing and using these instruments. In this 
review, several of these technological tools are documented, such as 
the e-nose, e-tongue, artificial vision systems, and instruments that 
allow texture measurement (texture analyzer, electromyography, 
others). These allow us to carry out processes of analysis, review, and 
evaluation of food to determine essential characteristics such as 
quality, composition, maturity, authenticity, and origin. The 
determination of these characteristics allows the standardization of 
food matrices, achieving the improvement of existing foods and 
encouraging the development of new products that satisfy the 
sensory experiences of the consumer, driving growth in the food 
sector.
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Abbreviations
a.u.: Acoustic Energy
ANN: Artificial Neural Networks
AVS: Artificial Vision System
CVS: Computer Vision System
DFA: Discriminant Function Analysis
EMG: Electromyography
GC-MS: Gas Chromatography-Mass Spectrometry
GC-O: Gas Chromatography-Olfactometry
HS-SPME: Headspace Solid Phase Microextraction
ICA: Imperialist Competitive Algorithm
LDA: Linear Discriminant Analysis
LEDs: Light Emitting Diodes
MSE: Mean Square Error
PCA: Principal Component Analysis
PLS-DA: Partial least square-discriminant analysis
PVC: Polyvinyl chloride
RGB: Red Green Blue
RSM: Response Surface Methodology
SVM: Support Vector Machines
VOCs: Volatile Organic Compounds

1. Introduction
The world of the food industry search to ensure satisfactory multisensory experiences for consumers through the
consolidation of quality standards for food products (Blissett & Fogel, 2013; Tuorila & Hartmann, 2020). The first
approach to each food matrix allows the consumer to identify attributes related to size, shape, color, and brightness. A
second approach allows more direct interactions related to the perception of smell, aroma, taste, temperature, and texture
of the product (Fine & Riera, 2019; Isogai & Wise, 2016; Moding et al., 2020; Nederkoorn et al., 2018). Recognizing
these sensory characteristics determines the acceptance or rejection of the food (Costell et al., 2009; Torres Gonzalez
et al., 2015; Wadhera & Capaldi-Phillips, 2014). One of the disciplines that study the sensory characteristics of food is
sensory analysis. This term became a field of study in the 17th century when Jean Anthelme Brillat-Savarin, in 1825,
wrote his first book entitled Philosophy of Taste, in which he established the basis for the analysis of food and how it is
perceived (Chong, 2012). The constant evolution of the concept and applicability of sensory analysis has consolidated its
study using trained panelists or instrumental methods. Although the analyses carried out by these panelists constitute an
essential source of information for the acceptance or rejection of a food product, this can be subjective due to biological,
social, and other external factors surrounding the subject (Buratti et al., 2018; Loutfi et al., 2015; Tan & Xu, 2020).

One of the main limitations when implementing sensory tests is the number of required panelists, ranging from 7 to
100 depending on the test type (Lawless &Heymann, 2010; O’Mahony, 2017). This implies an investment of human and
economic resources, raw materials, and/or time. This limitation has motivated researchers to generate technologies to
identify and quantify some sensory characteristics of foods with greater precision (Akimoto et al., 2017; Kusumi et al.,
2020; Pascual et al., 2018).

Such developments search to mimic the functioning of the five senses, such is the case of electronic noses (e-noses) and
tongues (e-tongues), which upon contact with food, generate an electronic response from a chemical interaction, which is
interpreted by a digital information processing system (Banerjee et al., 2019; Bonah et al., 2020). Similarly, image
analysis through devices such as cameras seek to simulate the sense of eyesight (Ansari et al., 2021; Barbon et al., 2017;
Kakani et al., 2020; Khojastehnazhand & Ramezani, 2020); concerning touch and hearing, some reports show various
technological tools that measure force and sound, seeking to imitate the behavior of these senses (Akimoto et al., 2019;
Kato et al., 2017; Kusumi et al., 2020).

Each of the technological tools mentioned above contributes a description of the primary sensory characteristics of the
foodmatrix to be evaluated. This article consolidates information on some technological tools reported in the literature for
sensory analysis in various food matrices.
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2. Electronic nose (e-nose)
Odor is one of the most representative attributes of food. This can be expressed as one of the qualities of Volatile Organic
Compounds (VOCs), so unique and distinctive that they are considered fingerprints (Bonah et al., 2020; Tan & Xu,
2020).

Generally, the sensory analysis method to identify such components is performed by panelists who rate and classify
on different scales the odor perceived in the sample (Barbieri et al., 2021; Giungato et al., 2018; Niu et al., 2019; �Swiąder
& Marczewska, 2021). On the other hand, different methods have been developed for the identification of VOCs,
which are characterized by high accuracy and reliability, such as: Gas Chromatography-Olfactometry (GC-O), Gas
Chromatography-Mass Spectrometry (GC-MS), Headspace Solid Phase Microextraction (HS-SPME), as some of the
most used methods (Attchelouwa et al., 2020; Chen et al., 2021). However, these methods usually require sample
conditioning, which involves investing many different types of resources (Shi et al., 2018). Considering the above,
devices such as the e-nose have been developed, consisting of an array of electrochemical sensors articulated with a
pattern recognition system that identifies, groups, and discriminates the VOCs (Gliszczy�nska-�Swigło & Chmielewski,
2017; Loutfi et al., 2015). This has become an alternative to generating fast and reliable results in the food industry
(Barbosa-Pereira et al., 2019; Conti et al., 2021; Wasilewski et al., 2019).

2.1 The internal structure of the e-nose
For the articulation of three fundamental systems characterizes E-nose: sensing, electrical conditioning, and pattern
recognition; see Figure 1.

The sensing system is composed of a matrix of sensors that can be of different types such as: conductivity, polymers,
intrinsic conductive polymers, metal oxide, surface acoustic waves, and quartz crystal balance, which allow the detection
of VOCs through absorption, adsorption, or chemical reaction methods. Depending on the characteristics of the food
matrix to be evaluated, the sensors that make up the e-nose must be carefully considered, as they will react more
efficiently to certain particles (Tan & Xu, 2020; Wilson & Baietto, 2009). This detection produces an electronic signal,
from which it is possible to characterize the VOCs.

The electrical conditioning system is responsible for matching the signal emitted by each of the sensors. Signal matching
consists of amplification and filtering to identify the analyzed food matrix sample (Shi et al., 2018).

Finally, the pattern recognition system receives the already conditioned electrical signal and is in charge of processing
it. For this procedure, extraction methods are used, which aim to obtain reliable and robust information from the electrical
signal, guaranteeing greater measurement efficiency. Some extraction methods are: Principal Component Analysis
(PCA), Support Vector Machines (SVM), Artificial Neural Networks (ANN), Linear Discrimination Analysis (LDA),
Discriminant Function Analysis (DFA), decision trees, and other machine learning classifiers (Tan & Xu, 2020; Yan
et al., 2015).

2.2 E-nose applications
E-nose is used in several food matrices to identify their authenticity due to the growing number of counterfeit products
that represent a significant risk to the health of consumers (Gliszczy�nska-�Swigło & Chmielewski, 2017). Additionally,

Sensor array 

Electronic nose

Electronic processing

Signal conditioning

DAQ  Device

Natural 
Signals

Processed
Signals

USB/UART

Pattern recognition

Extraction
method

Validation

Computer

Figure 1. Fundamental stages of operation of an electronic nose.
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this device also allows users to identify and group according to their specifications some food matrices such as: alcoholic
beverages, dairy products, and juices (Sanaeifar et al., 2017); the ripeness of fruits and vegetables; quality of meats; shelf
life of grains, among others (Du et al., 2019; Tan & Xu, 2020; Wang et al., 2019).

For example, the e-nose of the Alpha MOS FOX family has been used to identify possible adulteration of olive oil with
hazelnut and sunflower oils (Mildner-Szkudlarz& Jele�n, 2008). Also, in the analysis of flaxseed oil detecting adulteration
with other similar components (Wei et al., 2015).

In research conducted by Nurjuliana (2011), the volatile compounds in pork, beef, lamb, and chicken sausages were
analyzed. The samples taken from each of the sausages were analyzed by mass spectrometry, gas chromatography, and
zNose™ electronic nose, which allowed the identification of the type of meat from which the sausages were made.
Although the results of the tests carried out by all the instruments were highly efficient, the speed and low cost of using the
zNose™ e-nose were highlighted.

Additionally, in the research by Ghasemi-Varnamkhasti et al. (2019), an e-nose was custom designed using five types of
MOS sensors to classify two pieces of cheese: Roquefort and Camembert. This classification was carried out by taking
into account themilk (sheep, goat, or cow) with which it was made, the degree of pasteurization, and the maturity of these
cheeses.

Other reports show the use of e-noses to analyze fish. Güney and Atasoy (2015), used a low-cost e-nose developed at
Karadeniz University, composed of 8 metal oxide gas sensors, to classify three fish species (Horse mackerel (Trachurus
murphyi), Anchovy (Engraulidae) and Whiting (Merlangius merlangus). In addition, Zhang et al. (2012), analyzed
VOCs during the storage and freezing process of sawfish (Scomberomorus niphonius), finding a linear relationship
between a volatile nitrogen base with triethylamine. A separate investigation reports the use of the commercial e-nose
Alpha MOS FOX 3000, composed of 18 MOS-type sensors, to establish the sensory profile of the active aromatic
compounds of cumin (Cuminum cyminum L.) (Ravi et al., 2013).

Table 1 shows some relevant studies using e-nose in the food, specifying: product, purpose of the analysis, e-nose model,
type of sensor, extraction method, and main result obtained.

3. Electronic tongue (e-tongue)
The human tongue can identify five basic tastes: sour, salty, sweet, bitter, and umami (Beauchamp, 2019). Usually,
the evaluation and classification of the basic flavors of a product are done through trained panelists and sometimes
consumers (Jiang et al., 2018). However, these measurements can be subjective, which can be reduced by using
technological tools such as the e-tongue, thus ensuring repeatability and reproducibility of the results (Schlossareck &
Ross, 2019). Ross (2021) showed that combining different electrodes makes it possible to identify different flavors, such
as fatty,metallic, and others. Different investigations have shown that by using the e-tongue, it is possible to determine the
quality, adulteration, classification, or origin of food (de Morais et al., 2019; Elamine et al., 2019; Jiang et al., 2018;
Sobrino-Gregorio et al., 2018). The previously mentioned characteristics have allowed the e-tongue to become a fast,
economical and impartial detection alternative (Titova & Nachev, 2018); this is because it allows the characterization of
the flavor of the food matrix (di Rosa et al., 2017). Additionally, the e-tongue has a matrix of electrodes that, according
to their combination and characteristics, produce potentiometric, voltammetric, and impedimetric signals (Jiang et al.,
2018).

3.1 The internal structure of the e-tongue
E-tongue is characterized for articulating three fundamental systems: sensing, electrical conditioning, and pattern
recognition (di Rosa et al., 2017) (see Figure 2).

E-tongue sensing system is composed of two or more electrodes, each electrode has a membrane that upon contact with
the analyte generates a chemical interaction causing a reversible change in the electronic properties, which allows the
characterization of the food matrix (Tan & Xu, 2020).

Potentiometric-type electrodes measure the voltage differences between the working and the reference electrodes
(Wasilewski et al., 2019). The voltage change in themeasurement given by theworking electrodewill have a proportional
relationship to the concentration of the analyte (Jiang et al., 2018;W.Wang&Liu, 2019). Some of themembranes used in
potentiometric electrodes can be multi-channel lipid with a reference electrode made of a silver/silver carbon alloy
(Ag/AgC), chalcogenide glass with a polyvinyl chloride (PVC) film, liquid or polymeric, which allow the detection of the
voltage generated when in contact with the food matrix (Tan & Xu, 2020).

Page 5 of 23

F1000Research 2023, 12:340 Last updated: 30 MAR 2023



Ta
b
le

1.
R
es

u
lt
s
o
f
re

le
va

n
t
st
u
d
ie
s
u
si
n
g
e
le
ct
ro

n
ic

n
o
se

s
in

th
e
fo
o
d
in
d
u
st
ry

.

P
ro

d
u
ct

P
u
rp

o
se

o
f
th

e
a
n
a
ly
si
s

El
e
ct
ro

n
ic

n
o
se

m
o
d
el

a
n
d

co
m
b
in
a
ti
o
n
s

Se
n
so

r
ty
p
e

Ex
tr
a
ct
io
n

m
et

h
o
d

u
se

d

R
es

u
lt
s

R
ef
er

en
ce

C
h
ee

se
A
n
al
ys
is
o
f
ch

ee
se

ri
p
en

in
g

w
it
h
ra
w

an
d
p
as

te
u
ri
ze

d
m
ilk

C
u
st
o
m

D
es

ig
n

Si
x
p
ie
zo

el
ec

tr
ic
q
u
ar
tz

cr
ys
ta
ls

P
C
A
an

d
P
LS

-D
A

D
is
cr
im

in
at
io
n
o
f
ch

ee
se

s
o
f
ea

ch
m
ilk

ty
p
e

(V
al
en

te
et

al
.,

20
18

)

C
o
m
p
ar
is
o
n
o
f
ar
o
m
a

in
te
n
si
ty

to
se

n
so

ry
m
ea

su
re
m
en

t

P
O
LF

A
M
O
S

N
/A

D
em

o
n
st
ra
te
d
a
lin

ea
r
co

rr
el
at
io
n

b
et
w
ee

n
th
e
tw

o
fa
ct
o
rs

(P
ea

rs
o
n
's

R
=
0.
98

3)

(F
u
jio

ka
,2

02
1)

O
ri
g
in

an
d
au

th
en

ti
ci
ty

o
f

O
sc
yp

ek
ch

ee
se

w
it
h

P
ro

te
ct
ed

D
es

ig
n
at
io
n
o
f

O
ri
g
in

(P
D
O
)

SP
M
E-
M
S

M
S

P
C
A
,L

D
A
,

SI
M
C
A
,

SV
M

C
la
ss
if
ic
at
io
n
b
et
w
ee

n
90

%
an

d
97

%
ac

co
rd

in
g
to

th
e
ex

tr
ac

ti
o
n
m
et
h
o
d

(M
aj
ch

er
et

al
.,

20
15

)

A
rg

an
o
il

Id
en

ti
fi
ca

ti
o
n
o
f
ad

u
lt
er
at
io
n

w
it
h
su

n
fl
o
w
er

o
il

M
O
S

el
ec

tr
o
n
ic
g
as

n
o
se

5
M
O
S
se

n
so

rs
P
C
A
,D

FA
,

SV
M

85
%

id
en

ti
fi
ca

ti
o
n
o
f
o
ri
g
in
al

o
il
an

d
87

%
id
en

ti
fi
ca

ti
o
n
o
f
ad

u
lt
er
at
ed

o
il

(B
o
u
g
ri
n
ie

ta
l.,

20
14

)

Fl
ax

se
ed

o
il

O
ils

p
ro

ce
ss
ed

d
if
fe
re
n
tl
y
fo
r

co
u
n
te
rf
ei
t
d
et
ec

ti
o
n

A
lp
h
a
M
O
S

FO
X
30

00
18

M
O
S
se

n
so

rs
P
C
A

87
%

su
cc
es

s
ra
te

in
co

u
n
te
rf
ei
t

d
et
ec

ti
o
n

(W
ei

et
al
.,
20

15
)

P
o
rk

Id
en

ti
fi
ca

ti
o
n
o
f
ad

u
lt
er
at
io
n

o
f
m
in
ce

d
p
o
rk

w
it
h
sp

o
ile

d
p
o
rk

P
EN

2
10

M
O
S
se

n
so

rs
C
D
A
,B

D
A
,

P
LS

,M
LR

,
an

d
B
P
N
N

Th
e
id
en

ti
fi
ca

ti
o
n
su

cc
es

s
ra
te

o
f9

7%
(T
ia
n
et

al
.,
20

13
)

H
am

D
if
fe
re
n
ti
at
io
n
o
f
P
D
O

m
ar
ke

d
h
am

s
P
EN

2
10

M
O
S
se

n
so

rs
P
C
A

D
if
fe
re
n
ti
at
io
n
b
et
w
ee

n
h
am

ty
p
es

b
et
w
ee

n
80

%
an

d
87

%
(L
au

re
at
ie
t
al
.,

20
14

)

H
o
n
ey

Su
g
ar

b
ee

t
an

d
su

g
ar

ca
n
e

ad
u
lt
er
at
io
n
id
en

ti
fi
ca

ti
o
n

C
yr
an

o
se

32
0

32
se

n
so

rs
o
f
d
if
fe
re
n
t

ty
p
es

o
f
p
o
ly
m
er
ic

m
at
ri
x,

m
ix
ed

w
it
h

ca
rb

o
n
b
la
ck

A
N
N

Id
en

ti
fi
ca

ti
o
n
o
f
sa

m
p
le
s
w
it
h
a

su
cc
es

s
ra
te

o
f
89

.5
%

(S
u
b
ar
ie
t
al
.,

20
14

)

C
o
n
fi
rm

at
io
n
o
f
b
o
ta
n
ic
al

o
ri
g
in

A
lp
h
a
M
O
S

Fo
x
40

00
18

M
O
S
se

n
so

rs
P
C
A
,D

FA
,

LS
-S
V
M
,

P
LS

Th
e
su

cc
es

s
ra
te

is
b
et
w
ee

n
81

%
an

d
90

%
,d

ep
en

d
in
g
o
n
th
e
ex

tr
ac

ti
o
n

m
et
h
o
d

(H
u
an

g
et

al
.,

20
15

)

C
o
n
fi
rm

at
io
n
o
f
b
o
ta
n
ic
al

o
ri
g
in

an
d
id
en

ti
fi
ca

ti
o
n
o
f

ad
u
lt
er
at
io
n
w
it
h
ri
ce

an
d

co
rn

sy
ru

p
s

Fl
as

h
G
C

--
P
C
A
,S

V
M
,

P
LS

D
if
fe
re
n
ce

b
et
w
ee

n
sa

m
p
le
s
w
it
h
a

71
%

su
cc
es

s
ra
te

an
d
a
65

%
su

cc
es

s
ra
te

in
id
en

ti
fi
ca

ti
o
n

(G
an

et
al
.,
20

16
)

Page 6 of 23

F1000Research 2023, 12:340 Last updated: 30 MAR 2023



Ta
b
le

1.
C
on

tin
ue

d

P
ro

d
u
ct

P
u
rp

o
se

o
f
th

e
a
n
a
ly
si
s

El
e
ct
ro

n
ic

n
o
se

m
o
d
el

a
n
d

co
m
b
in
a
ti
o
n
s

Se
n
so

r
ty
p
e

Ex
tr
a
ct
io
n

m
et

h
o
d

u
se

d

R
es

u
lt
s

R
ef
er

en
ce

C
h
er
ry

to
m
at
o

ju
ic
e

Id
en

ti
fi
ca

ti
o
n
o
f
ad

u
lt
er
at
io
n

w
it
h
ri
p
en

ed
to
m
at
o
ju
ic
e

P
EN

2
10

M
O
S
se

n
so

rs
P
C
A
,C

A
Id
en

ti
fi
ca

ti
o
n
w
it
h
a
76

%
su

cc
es

s
ra
te

(H
o
n
g
et

al
.,

20
14

)

Sp
ir
it
s

C
o
n
fi
rm

at
io
n
o
f
b
o
ta
n
ic
al

o
ri
g
in

(r
ye

,t
ri
ti
ca

le
,w

h
ea

t,
d
is
ti
lle

d
ag

ri
cu

lt
u
ra
lc
o
rn

)

Fl
as

h
G
C

--
P
C
A
,D

FA
,

SI
M
C
A
,

SQ
C

Th
e
su

cc
es

s
ra
te

is
b
et
w
ee

n
71

.9
%

an
d
82

.9
%

d
ep

en
d
in
g
o
n
th
e

ex
tr
ac

ti
o
n
m
et
h
o
d

(W
iś
n
ie
w
sk
a

et
al
.,
20

16
)

Li
q
u
o
r

Id
en

ti
fi
ca

ti
o
n
o
f
au

th
en

ti
ci
ty

o
f
tr
ad

it
io
n
al

P
o
lis
h
b
ee

r
N
al
ew

ka

Fl
as

h
G
C

--
P
C
A
,D

FA
,

SI
M
C
A
,

SQ
C

Id
en

ti
fi
ca

ti
o
n
w
it
h
a
su

cc
es

s
ra
te

b
et
w
ee

n
22

%
an

d
89

.5
%

d
ep

en
d
in
g

o
n
th
e
sa

m
p
le
an

d
ex

tr
ac

ti
o
n
m
et
h
o
d

(Ś
liw

iń
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Regarding voltammetric electrodes, these are used in conjunction with a minimum electrode configuration in which one
must have a working, a reference, and an auxiliary electrode (Jiang et al., 2018;Wasilewski et al., 2019). Generally, these
working electrodes are constituted by a bare or modified metal, which contemplates any of the following compounds:
copper (Cu), nickel (Ni), palladium (Pd), silver (Ag), tin (Sn), titanium (Ti), zirconium (Zr), gold (Au), platinum (Pt) and
radium (Ra) (Jiang et al., 2018). Its operation encourages the transfer of electrons through the food matrix, measuring the
resulting polarization current, which has a direct relationship with the concentration of certain components present in the
food (Wei et al., 2018).

Another group of electrodes is those of impedimetric type, characterized by being coated with different polymeric
materials, which, upon receiving an alternating signal of variable frequency and constant amplitude, produce an alteration
in the impedance value (Garcia-Hernandez et al., 2018). This impedance change allows for characterizing, detecting, and
discriminating different components such as: sucrose (C12 H22 O11), sodium chloride (NaCl), potassium chloride (KCl),
and hydrochloric acid (HCl) (Podrazka et al., 2017). According to the literature, the most commonly used electrodes on
the market are potentiometric and voltammetric electrodes due to advanced development (Wang & Liu, 2019).

Tan and Xu (2020) indicated that electrodes in the development phase incorporate biomaterials such as enzymes, whole
cells, tissues, receptors, or antibodies, whose chemical interaction with the food generates a transfer of electrons, ions, or
molecules. This transfer modifies the characteristics of the electronic signal, like those produced by potentiometric and
voltammetric electrodes. It is expected that these biosensors will be a technology that will contribute to improving results
in the future.

The electrical conditioning and pattern recognition systems of the e-tongue present particularities closely like those of the
e-nose. The only substantial difference between these two technological tools is presented in the sensing system in terms
of the characteristics specific to the internal and structural design of the sensors (Tan & Xu, 2020; Wasilewski et al.,
2019).

3.2 E-tongue applications
The use of the e-tongue in the food industry encompasses a wide range of applications, including discrimination by type
and place of origin, verification of authenticity, adulteration or counterfeiting, and quantification of food matrix
components (Titova & Nachev, 2018; Wasilewski et al., 2019).

A clear example of the use of such technology for classifying products by type and place of origin is evidenced in the
research developed by Souayah (2017), where a potentiometric e-tongue was used to classify 60 samples of olive oil.
Moreover, Elamine et al. (2019) discriminated 31 samples of honey from Portugal by botanical origin using an
impedimetric e-tongue.

Cetó and Pérez (2020) used an inset voltammetric e-tongue from Bas Inc. configured with three electrodes of gold (Au),
platinum (Pt), and glassy carbon (C), to carry out the process of identification of authenticity and classification of
44 samples of six different varieties of vinegar. The measurement results of the equipment were subjected to the PCA and
LDA extraction methods, which allowed the discriminating and categorizing of the total of the analyzed samples with
100% accuracy. This research allowed it to generate records of the electrochemical fingerprints of the vinegar.

ZZZZZ

Electronic tongue

Sensor array

Liquid sample

Electrodes

Electronic processing

Signal conditioning

DAQ  Device

Natural 
Signals

Processed
Signals

USB/UART

Pattern recognition

Extraction
method

Validation

Computer

Figure 2. Fundamental stages of operation of an electronic tongue.
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Furthermore, a voltammetric-type e-tongue was custom-developed to identify adulteration in roasted ground coffee
(de Morais et al., 2019). This research analyzed 90 cups of coffee (60 unadulterated and 30 adulterated). LDA, SPA, and
PLS-DA identification methods were applied to the measurements obtained; as a result, the adulterated beverages were
identified and the purity percentage in each sample was quantified.

Another example is the investigation of the evolution process of taste compounds in the chicken stew at different cooking
times, which focused on detecting nucleotides and free amino acids using a commercial e-tongue (TS-5000Z, Insent). As
a result, the proportion of the components detected in each cooking stage and the identification of inosinemonophosphate
(IMP), glutamic acid (Glu), lysine (Lys), and sodium chloride (NaCl) as the main compounds highlighted the final flavor
attributes of the chicken were evidenced (Liu et al., 2017). Table 2 shows some relevant studies in which e-tongues in
different food matrices.

Table 2. Results of relevant studies using electronic tongues in the characterization and identification in the
food matrices.

Food Purpose of the
analysis

Type of
electrode
used in the
electronic
tongue

Extraction
method

Results Reference

Milk Brand
Classification

Voltammetric PCA and
PLS

80.5% success rate (Yu et al.,
2015)

Quantitative
analysis of urea in
adulterated milk

Voltametric PCA and
PLS

Identification and
separation of different
components

(Li et al.,
2015)

Ham Measurement of
curing processes
with different
amounts of salt

Potentiometric RNA Differentiation with a
100% success rate

(Gil-Sánchez
et al., 2015)

Comparison of
umami flavor
peptides in water-
soluble
extractions

Voltammetric PCA Comparison with 65%
success rate

(Dang et al.,
2015)

Meat Quality modeling
and classification
by breed

Potentiometric PCA and
LDA

100% identification and
97.5% prediction for
each breed

(Surányi
et al., 2021)

Ammonia and
putrefaction
detection

Voltammetric PCA and
PLS-DA

Classification of
samples with ammonia
at 100%

(Apetrei &
Apetrei,
2016)

Pork Determination of
the role of salt in
the flavor of the
meat

Lipid
Membrane

PCA Identification of the
highest flavor indexes
in dry-cured meat with
a salt content of 3% and
5%

(Tian et al.,
2020)

Vegetable
oil

Determination of
three quality
parameters

Potentiometric PCA and
PLS

Quantification of the
three parameters with
a relative error of 20%.

(Semenov
et al., 2019)

Vegetable
milk

Emulation of
sensory analysis
for product
discrimination

Voltammetric PCA and
PLS

Product differentiation
with a variance of 77%

(Pascual
et al., 2018)

Red Wine Evaluation of
phenolic contents
for 14 varieties of
liquor

Voltammetric PCA and
PLS

Validation with a
variance of 85.8%

(Garcia-
Hernandez
et al., 2020)

Honey Validation of
adulteration

Voltammetric PLS-LDA,
LSD and
MLR

Classification of
samples between
original and
adulterated with an
accuracy of 97.5%

(Oroian
et al., 2018)
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4. Artificial Vision System
Computer Vision System (CVS) also known as Artificial Vision System (AVS), is an image analysis tool used to obtain
information about objects through them (Bhargava & Bansal, 2018; Wu & Sun, 2013). This is due to its ability to
characterize: shape, size, color, and other particularities of the object, which can be static or moving (Zhu et al., 2021).
Therefore, the CVS can be used in both continuous and static production lines, achieving a real-time analysis, as it allows
fast, accurate, and non-invasive captures, with reliable and reproducible results (Barbon et al., 2017; Patrício & Rieder,
2018). Due to its flexibility and technological development, a CVS can store information about an object to perform
further analysis using new images (Taheri-Garavand et al., 2019; Wu & Sun, 2013). Thus, the CVS becomes an
alternative to avoid the possible errors of quality inspection of the objects which the human eye can incur (Patrício &
Rieder, 2018).

4.1 CVS internal structure
A CVS is composed of three fundamental stages: illumination, image detection, and pattern recognition (Kakani et al.,
2020), see Figure 3. The first stage plays an important role in image acquisition, since light has a direct impact on the
clarity and color of the images and its improper use can generate shadows and unwanted reflections, cataloged as noise
in the images (Vithu &Moses, 2016). Therefore, depending on the application of the system, an appropriate selection of
the light-generating elements must be made, considering characteristics such as wavelength, intensity, and direction.
These light-generating elements can be light bulbs (incandescent, fluorescent, halogen), lasers, light emitting diodes
(LEDs), X-ray tubes, and infrared lamps (Naik & Patel, 2017; Sun et al., 2019; Zhu et al., 2021). These ensure clarity,
repeatability, and reliability of the image (Barbon et al., 2017).

Two of the most commonly used technologies in the second stage are cameras or scanners, which are responsible
for taking an image of the object to be analyzed. Cameras capture a two-dimensional image instantaneously, while
scanners take a line of pixels in an instant of time, so it requires a mechanism that performs a displacement of the scanner
or the object to capture a succession of data and thus obtain the two-dimensional image (Patrício & Rieder, 2018).
Internally, these devices have specialized sensors that can capture color, monochromatic, thermal, or ultraviolet images
depending on their characteristics (Patrício & Rieder, 2018; Sun, 2016; Vithu &Moses, 2016; Zhang et al., 2014). Other
technologies used in this stage are: Hyperspectral, Magnetic Resonance, and X-Ray (Sun, 2016; Zhang et al., 2014).

Table 2. Continued

Food Purpose of the
analysis

Type of
electrode
used in the
electronic
tongue

Extraction
method

Results Reference

Tea Classification of
different species

Voltammetric LDA, SPA,
GA and SW

100% success rate
classification with
LDA/SPA method

(Rodrigues
et al., 2018)

Measurement of
phenolic
compounds
during the storage
process for quality
assurance

Potentiometric PLS Classification of the
different types of tea
with a coefficient of
determination of Rp2

between 0.926 and
0.956

(Ruengdech
et al., 2019)

Blueberry
juice

Characterization
of four types of
cranberry juice for
flavor profiling

Potentiometric ANOVA and
PLS

Characterization of
flavor profile
components given a
cross-correlation with a
variance of 83.14%

(Yu et al.,
2018)

Honey Discrimination of
botanical origin

Impedimetric PCA Discrimination of each
characteristic of honey
types

(Elamine
et al., 2019)

Red Meat
and
Poultry

Determination of
optimal dilution
level of meat
extract

Potentiometric LDA Discrimination with an
accuracy between
68.77% and 78.13%,
depending on the
dilution percentage

(Zaukuu
et al., 2021)
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Finally, the third stage aims to extract quantitative and qualitative information from the image using an analysis
algorithm usually run on a processor (Zhu et al., 2021). Depending on the application and the complexity of the system,
image processing is divided into three different levels: low, medium, and high. At the first level, operations such as
cleaning of noise caused by shadows or external elements, quality enhancement, or correction of image illumination
errors are performed (Patrício & Rieder, 2018). Then, at the medium level, segmentation, description, classification of
shapes, and image dimensions are performed (Sun et al., 2019; Taheri-Garavand et al., 2019). Finally, at the third level,
more complex operations are performed, including classification, comparison, and discrimination of the characteristics
of the object in the image. These operations can be applied to the area or regions of interest using analysis methods
such as statistical tools or computational models such as neural networks, which are some of the most used extraction
methods (Kakani et al., 2020; Patrício & Rieder, 2018).

Given the versatility and advantages presented by a CVS, the food industry has been implementing these systems to
identify properties such as: morphology, color, texture, freshness, and quality (Bhargava & Bansal, 2018; Patrício &
Rieder, 2018; Taheri-Garavand et al., 2019; Vithu & Moses, 2016). In general, the information collected is fed into
databases to train learning algorithms and establish patterns to build a knowledge base, with which a system for
autonomous decision-making can be implemented to provide an agile and flexible solution (Zareiforoush et al., 2015).

4.2 CVS applications
The applications that recurrently use CVS are focused on the classification and prediction of the characteristics of a
food matrix, whether it is an individual analysis, a production batch, or harvesting (Arsalane et al., 2020; Kakani et al.,
2020; Velesaca et al., 2021). Research such as the one carried out by Arselane et al. (2020) in which they were able to
successfully evaluate and determine the freshness of beef based on color and texture obtained by a portable custom-
designed CVS. The system comprises fluorescent lighting, a GigEPRO camera, and an EVM6678 processing system in
which PCA, SVN, PNN, and LDA algorithms were evaluated using Matlab®. In a similar investigation carried out by
Barbin (2016) to find the relationship between color and quality of chicken meat, a CVS was used with a Doc L-Pix
camera.

Researchers such as Ghyar & Birajdar (2017), implemented a CVS, with which the state of pests in the rice plants was
identified, to determine and discriminate anomalies or disease traits using leaf texture and color as reference parameters.
The system developed consists of a Sony F470 camera, LED illumination, and computer analysis where ANN and SVM
algorithms were run. Similarly, Koklu and Ozkan (2020) carried out the classification of seven different bean varieties to
ensure the uniformity and quality of the seeds, identifying the characteristics of each bean species such as: area, perimeter,
length of major and minor axes, aspect ratio, roundness, equivalent diameter, among others. The CVSwas equipped with
a Prosilica GT2000C camera, LED lighting, and a processor where an ANN algorithm was implemented in Matlab®.

The research performed by Shrestha et al. (2016) reported a morphological analysis of wheat kernels to segment and
classify them into three groups: healthy, damaged, and very damaged, as a consequence of premature germination. The
result obtained was the segmentation and classification of the three groups of grains with an accuracy of 95% and 72.8%,

Lighting

Computer vision system (CVS)

Sample

Lamps

Camera

Capture Pattern recognition

Extraction
method

Validation

Computer

Figure 3. Fundamental stages of operation of a machine vision system.
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respectively. The custom-designed systemhas twoRL04C-OC cameras (XimeaGmbH,Germany), LED lighting system,
and ANN implemented in Matlab®.

Other applications of CVS systems are in fruits and vegetables, such as the one carried out by Santos Pereira (2018),
where he classified the ripeness level of harvested papayas through the identification of color, length, diameter, and
weight with an accuracy of 94.3% compared to manual classification. The CVS developed in-house, incorporates a Sony
camera (Japan) located in an environment illuminated with white LED light. The pictures of each fruit were analyzed in
Matlab® using a decision tree algorithm. Table 3 shows some relevant investigation where CVS has been used.

5. Texture analyzer
The texture of a food is perceived through the response to the contact between the body part and the food. It is a
determining characteristic in the acceptance of the product by the consumer (Civille, 2011; Liu et al., 2019; Muthuku-
marappan & Karunanithy, 2021). Texture is a quality attribute used in the food industry (Torres Gonzalez et al., 2015),
allowing the parameterization and standardization of food products (Liu et al., 2019). For example, freshness, a
determining characteristic in selecting a vegetable or fruit, can be described by its hardness (Liu & Zhang, 2021). The
latter is one of the primary properties of texture, as well as cohesiveness, viscosity, elasticity, and adhesiveness
(Foegeding et al., 2011).

To determine some of the main textural characteristics mentioned, Friedman in 1963 established a method called Texture
Profile Testing (TPA) (Nishinari et al., 2019). This method generates characteristic curves from the force measurement
performed by the jaw to realize a change in the geometrical property of the product, generating deformation or fracture
(Kohyama, 2020; Peleg, 2019). The study of these curves allows for establishing and quantifying texture characteristics
such as: brittleness, hardness, adhesiveness, cohesiveness, elasticity, gumminess, and chewiness (Nishinari et al., 2019).

For the measurement of texture characteristics, different methodologies and instruments have been developed, the
most widely used technology is centered on texture analyzers or texturometers (Torres Gonzalez et al., 2015), which are
based on the TPA principle, this device simulates the bite of the jaw in two cycles (compression and decompression),
through a controlled mechanism that vertically displaces a uniaxial compression cell (Peleg, 2019). When the cell comes
into contact with the product, it generates an electrical signal conditioned by a transducer and sent to a computer to be read
by operating software (Taniwaki & Kohyama, 2012). The displacement is carried out until it reaches either a distance
threshold or a force level defined by the operator. When this limit is exceeded, the cell moves back and repeats the cycle
(Liu et al., 2019).

5.1 Texture Analyzer Internal Structure
The texture analyzer usually has three fundamental parts: amoving beam, a load cell, and a control panel (Schmidt, 2018).
The first part has a mechanical system that performs the precise vertical displacement of the beam where the load cell is
supported; these mechanisms work with a spindle-type system, which has a motor coupled to it that transmits the
controlled circular motion (Sussex, 2013). The load cells are electrical elements that generate a voltage signal when they
come into contact with a surface (Liu et al., 2019). The cells used are in a range of operation from 100 g to 500 kg
(Schmidt, 2018; Sussex, 2013), which will depend on the design of each manufacturer's analyzer.

With the basic structure of the texture analyzer already mentioned, a variety of probes can be incorporated,
which, coupled with the load cell, make it possible to measure a large part of the common texture parameters in
foodstuffs (Liu et al., 2019). Among which are the cylindrical probe, which was used to determine the firming kinetics of
breadcrumbs (Jekle et al., 2018). The conical probe that allowed me to measure the texture for deep-fried and air-fried
French fries (Gouyo et al., 2020), The Spherical probe with which they analyzed the texture of the surface of cured ham
(Fulladosa et al., 2021). Also, there are gel and cut probe, each with properties to perform certain texture tests.

5.2 Texture analyzer applications
Some applications in which the texture analyzer is used are evidenced in investigations such as the one conducted
by Aguirre et al. (2018), where texture attributes were validated in the “woody breast” and “cooking methods on the
marination” (marinated breast), for which a texture analyzer (TA. XT plus, Texture Technologies, Hamilton, MA) was
used. The results were compared with a descriptive test, finding a significant difference in 9 of the 11 texture attributes.
Another application is shown in the research conducted by Jiménez et al. (2017), where two lionfish surimi patties were
studied to validate the efficiency of high-power ultrasound on textural properties. Themeasurement was performedwith a
texture analyzer (TA. XT plus, Texture Technologies, Hamilton, MA) correlated with trained panelists.
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Other relevant studies, such as those mentioned above, where the aim is to characterize products and correlate them with
sensory tests using a texture analyzer, are shown in Table 4.

6. Electromyographic analysis
Although TPA is a method that simulates the chewing process, its shear rate is low compared to that of the human bite
(Nishinari & Fang, 2018). Therefore, some researchers have focused on finding other mechanisms that allow an
understanding of the bite processes of people in a real environment. One of the alternatives is the study of Electromyo-
graphic (EMG) signals, which are produced by the nervous system so that the muscles involved during the chewing
process react in a certain way producing electrical signals that can be measured (Besomi et al., 2020; Pereira de Caxias
et al., 2021). These signals are captured with an electromyograph, which integrates an instrumentation amplifier that
captures and amplifies the EMG signal with the help of three reference electrodes (Fang et al., 2020). This signal is sent
through a data acquisition board (DAQ), to a processing systemwhere it is processed and sent to a data acquisition system
(DAS) (Gohel & Mehendale, 2020) to a processing system where it is subjected to extraction methods that perform the
analysis of the signal (Ahsan et al., 2009; Zabala et al., 2019).

Sodhi et al. (2019) correlated bite EMG signals with texture variables (instrumental and sensory) of seven Indian sweets,
identifying EMGparameters that distinguish the different textured foods. In addition, the PCA determined the significant
correlation between hardness (instrumental and sensory) and sensory stickiness. Similarly, Shimada et al. (2012)
established intraoral force recordings to analyze the mechanics of human chewing by measuring the force (using strain
gauges located on the molars) and the EMG signals (using electrodes located on the masseter muscle) during the biting
process of five different products (rice, bread, almonds, banana, and apple). Other relevant studies where the effectiveness
of the analysis of EMG signals to determine the texture of a food matrix is sought to be validated are shown in Table 5.

Table 4. Results of relevant studies using TPA in in the food industry.

Food Purpose of the analysis Texture
analyzer

Type of
analysis

Reference

Quinoa Characteristics of Quinoa Starch
(TPA)

TA. XT 2i ANOVA
and LSD

(Wu et al., 2017)

Bread Evaluation of texture attributes TA. XT plus ANOVA,
LSD, and
PCA

(Aleixandre et al., 2021)

Olives Identification of kinesthetic
properties of olives

TA. XT plus ANOVA (Lanza & Amoruso, 2018)

Pear Identification of textural
properties of Asian pear peel

TA. XT 2i ANOVA (Pham & Liou, 2017)

Strawberry jam Relationship between sensory and
instrumental analysis for the
texture of strawberry jam

TA. XT 2i ANOVA (Kurotobi et al., 2018)

French fries Evaluation of the texture of French
fries from various restaurants.

TA. XT plus ANOVA (Li et al., 2020)

Cooked rice Identification of textural
properties

TA. XT plus ANOVA,
PCA

(Tao et al., 2020)

Chicken breast Identification of textural
properties

TA. XT plus ANOVA (Aguirre et al., 2018)

Table 5. Results of relevant studies on the relationship between EMG and food texture.

Food Purpose of the
analysis

Instrument Type of
analysis

Results Reference

7 different foods
(Rasgulla, gulab
jamun, cham, milk
cake, petha, chana
murgi, chocolate
barfi)

Correlation of EMG
variables with
texture
parameters

Own EMG PCA The PCA variables
explain 76% of the
variance, and the
principal components
are correlated with
instrumental and
sensory hardness.

(Sodhi
et al.,
2019)
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7. Acoustic analysis
Food products have the characteristic that when consumed they generate sounds that allow identifying or relating some
textural properties such as hardness, crispness, and crunchiness to it (Dias-Faceto et al., 2020). Some of the equipment to
perform these measurements use devices such as microphones connected to computers, texture analyzers integrated with
microphones (Dias-Faceto & Conti-Silva, 2022), and alternative designs with oscillating tips and piezoelectric sensors
(Taniwaki et al., 2006). All these devices allow capturing the acoustic waves produced by the deformation of the product.

Researchers such as Bło�nska et al. (2014), showed that adding inulin with reduced fat content significantly affected the
acoustic parameters of Short-Dough Biscuits. Eight Short-Dough Biscuits with different percentages of inulin addition
were compared, determining the impact on the acoustic properties and the decrease in the breaking workforce. For
example, the biscuit with 74.1% fat and 18.5% inulin, showed a low acoustic energy level of 1.134 a. u. this compared to a
biscuit with 55.6% fat and 9.3% inulin, in which a high acoustic energy level of 17.373 a. u. was found, the former being
less brittle and hard compared to the latter. This was achieved using a Zwick 1445 measuring system (Zwick GmbH &
Co. KG, Ulm, Germany). Separately, Jakubczyk et al. (2017) studied the acoustic signals generated during puncture tests
on some coextruded cereal products with different fillings (toffee, milk, fruit jelly, coconut, and chocolate creams), to
perform the analysis of hardness, crunchiness, and texture sound attributes for each product. The results showed that the
snacks with jelly filling were perceived as less crunchy and soft, compared to the snack with milk cream filling, which
showed high acoustic and mechanical values that link it to crunchiness. The variables were measured with a BC45
cooking extruder (Clextral, Firminy, France). Other relevant investigation, such as those mentioned above, where
acoustic analysis was performed to determine some textural properties of certain foods, can be seen in Table 6.

Table 5. Continued

Food Purpose of the
analysis

Instrument Type of
analysis

Results Reference

Hydrocolloid gels Identification of
different textures

EMG ANOVA Identification of the
relationship of EMG
signals with chewing
stress, fracture
toughness, and
adhesiveness.

(Kohyama
et al.,
2015)

Dhokla, paneer,
rasgulla, cake and
jelly

To study the
relationship of
EMG variableswith
sensory and
instrumental
texture
parameters.

EMG and
texture
analyzer

PCA Fifteen EMG variables
were found to be
effective in explaining
significant texture
variation (p ≤ 0.05).

(Rustagi
et al.,
2022)

Steamed rice cake Study of rice cake
structure with
different rice flour
particle sizes.

EMG and
texture
analyzer

TSD,
ANOVA
and
MFA

The EMG response
measured the
relationship between
the chewing process
and textural
properties.

(Lee et al.,
2021)

Brown rice and
wheat flour
crackers

Physicochemical
and textural
evaluation

EMG and PCA Correlation between
sensory parameters
and EMG, for the two
cookies found
significant differences
(p < 0.05) that
distinguish the texture
of the cookies.

(Dhillon
et al.,
2021)

Table 6. Results of relevant studies on the relationship between acoustic analysis and texture of food.

Food Purpose of the
analysis

Instrument Type of
analysis

Results Reference

Chips,
cereals,
cookies,
others.

Identification of
instrumental
configuration with
increased sensitivity
of acoustic signals
used as a sensory
indicator of dry and
crispy foods.

TA. XT plus
Texture
Analyzer

SPL
Dias-Faceto,
Salvador,
and Conti-
Silva 2020

Identification of gain
1 as the most
suitable acoustic
condition to define
different croaking
intensity.

(Dias-
Faceto
et al.,
2020)
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8. General conclusions
As evidenced in this review, some technological tools have been developed to emulate the functioning of the five senses
(smell, taste, sight, touch, and hearing), seeking to quantify and characterize some sensory properties of different food
matrices, to compare, parameterize and standardize a product. These investigations show that the use of technological
tools guarantees the repeatability and reproducibility of the process, compared to the results obtained when working
with trained panelists. Therefore, the use of this type of device reduces the number of samples required to perform the
analysis, in addition to dispensing with the need for a team of trained panelists, which generates a reduction in costs. In
addition, another advantage of these tools is the wider measurement capacity compared to that of human beings.
However, most of the tools analyzed only have the property of measuring a single characteristic in a food matrix, this
becomes an inconvenience when it comes to characterizing an entire product, for which many tools must be available,
samples required and therefore an increase in the time of the analysis and availability of personnel to carry out the process.
This is why both the scientific community and the industry, increasing the development of research that seeks to create
new technological tools that allow themeasurement of two ormore sensory characteristics in a foodmatrix. All the above,
seeking to develop new food products and improve existing ones to satisfy the sensory experiences of the consumer,
driving growth in the food sector.
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