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Abstract: A biologically inspired cognitive architecture is described which uses navigation maps
(i.e., spatial locations of objects) as its main data elements. The navigation maps are also used to
represent higher-level concepts as well as to direct operations to perform on other navigation maps.
Incoming sensory information is mapped to local sensory navigation maps which then are in turn
matched with the closest multisensory maps, and then mapped onto a best-matched multisensory
navigation map. Enhancements of the biologically inspired feedback pathways allow the intermediate
results of operations performed on the best-matched multisensory navigation map to be fed back,
temporarily stored, and re-processed in the next cognitive cycle. This allows the exploration and
generation of cause-and-effect behavior. In the re-processing of these intermediate results, navigation
maps can, by core analogical mechanisms, lead to other navigation maps which offer an improved
solution to many routine problems the architecture is exposed to. Given that the architecture is
brain-inspired, analogical processing may also form a key mechanism in the human brain, consistent
with psychological evidence. Similarly, for conventional artificial intelligence systems, analogical
processing as a core mechanism may possibly allow enhanced performance.

Keywords: navigation; maps; analogy; causality; cognitive architecture; BICA; artificial intelligence;
artificial general intelligence

1. Introduction

The Causal Cognitive Architecture 4 (CCA4) is a biologically inspired cognitive ar-
chitecture that uses spatial navigation maps as its main data elements. These “navigation
maps” hold spatial data, just as, for example, an automobile road map holds various
roadway-related spatial data; however, the architecture’s navigation maps are also used for
holding operations that can be performed on other navigation maps as well as being the
substrate where the operations can occur.

A cognitive architecture represents a theory of how a mind works, which is also able
to be implemented in some artificial system, usually via a computer simulation. A number
of cognitive architectures have been developed in the last few decades [1–3]. Biologically
inspired cognitive architectures (BICA) tend to be more loosely inspired by biological
constraints, often with the goal of creating human-level cognitive functioning. The Causal
Cognitive Architecture is a mammalian brain-inspired architecture with regard to certain
biological features, rather than trying to duplicate every pathway of the biological brain.

A key biological inspiration of the Causal Cognitive Architecture was the extensive
implementation of navigation maps as the main data structures of the system. In the last
two decades, research has shown the key role of navigation maps in the hippocampus of
the mammalian brain [4–8]. Cognitive modeling of spatial navigation has been considered
by Langley [9]. It has been suggested by Schafer and Schiller that both the hippocampus
and the neocortex contain maps of spatial items as well as non-spatial items which would
include information related to social interactions and more abstract features such as con-
cepts [10]. Hawkins and coworkers have noted that the grid cells in the hippocampus,
which have been shown to contain a representation of the location of the experimental
animal in the external world, may also exist in the neocortex, and thus perhaps the entire
neocortex can used as a spatial framework in which to store the structure of objects [11].

AI 2022, 3, 434–464. https://doi.org/10.3390/ai3020026 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai3020026
https://doi.org/10.3390/ai3020026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0001-8052-6448
https://doi.org/10.3390/ai3020026
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai3020026?type=check_update&version=1


AI 2022, 3 435

Another biological inspiration of the Causal Cognitive Architecture involved offering
a model that incorporated the navigation maps mentioned above, and showed how, with
relatively few changes (i.e., corresponding to a feasible biological evolutionary path), the
Causal Cognitive Architecture’s behavior could change from pre-causal but stable abilities
to an architecture capable of full causal behavior, though at a much higher risk of psychotic-
like behavior.

Except for humans, most other mammals do not readily demonstrate psychotic symp-
toms. While other mammals cannot communicate as clearly as humans, it is possible to
observe symptoms of many other psychiatric disorders in their behavior at times; how-
ever, psychosis is rare. In fact, it is challenging to induce laboratory animals to show
schizophrenic-like symptoms for use in psychopharmacological research environments [12].
On the other hand, greater than 10% of the human population will have psychotic or
psychotic-like symptoms at some point [13]. Similarly, while humans readily can demon-
strate full causal behavior, even as infants [14], other animals even as adults do not show
full casual abilities. For example, the Asian elephant has brain of much greater size than a
human brain, yet Nissani has shown that the elephant’s behavior occurs as a result of asso-
ciative learning rather than genuine causal abilities [15]. For example, (non-mammalian)
crows are often portrayed as being able to show full causal behavior, but Neilands and
colleagues show that, in experiments (e.g., dropping an object down a tube in order for a
food item to become available to the bird), there is actually little causal understanding [16].
Primates can use a stick to push food rewards through and out of a tube; however, if a
gravity trap (i.e., a hole in the tube) is added, there is relatively poor genuine understanding
of the actual cause and effect, and associative learning is used to figure out how to shove
the food around the hole and through the tube [17].

An early version of the Causal Cognitive Architecture showed how, by increasing the
feedback pathways from the module where operations are performed on the navigation
map to the sensory input modules, the architecture went from pre-causal behavior to more
fully causal behavior, albeit with the risk of psychotic-like malfunctioning [18–21]. The
actual mechanism is discussed in more detail in the sections below. The next version of
the architecture, named the Causal Cognitive Architecture 1, made much more extensive
usage of navigation maps and showed that it was possible to create a system with the
potential for intelligent behavior based on navigation maps [22]. In the Causal Cognitive
Architectures 2 and 3, a solution to the binding problem was presented as a necessity so
that the architecture could handle non-toy problems without the risks of the combinatorial
explosion of processing larger sensory inputs as well as the usual condition in the real
world of inputs changing with time [23,24]. In these architectures, there was binding of
both the features of space and of time onto navigation maps. The actual mechanisms are
discussed in more detail in the equations and description below.

Below, we present an enhancement of the Causal Cognitive Architecture in a new
Causal Cognitive Architecture 4 (CCA4). Figure 1 depicts a summary of this architecture.
Given that the Causal Cognitive Architecture is (albeit, loosely) mammalian brain-inspired,
and given that there is our assumption discussed above that the neocortex is largely
functionally composed of navigation maps, now, in the CCA4 the navigation maps for
each of the sensory systems which in the CCA3 were stored outside of the main repository
of navigation maps within separate Input Sensory Vectors Association Modules, they are
more closely integrated with each other and the multisensory navigation maps stored in
the Causal Memory Module.

One result of the change is that the CCA4 now more faithfully reflects biological
cortical organization, where different sensory modalities have their own regions [25].
However, a more important result which emerges is that a core processing operation of
the Causal Cognitive Architecture 4 now readily and extensively makes use of analogical
reasoning. This does not refer to solving analogical problems one would see, for example,
on a human intelligence test (although the core analogical reasoning operation would
contribute to the solution of such problems), but rather that analogical reasoning is used
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ubiquitously by the architecture in the processing of most sensory inputs and the solution
of most day-to-day problems.
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2. Operation of the Causal Cognitive Architecture 4 (CCA4)

In this section, we walk through the operation of the Causal Cognitive Architecture 4
(CCA4). Although we use the architecture of the CCA4 (Figure 1) in this major Section 2,
we largely consider the functionality present in the Causal Cognitive Architecture 3 [24]. In
the following major Section 3, we consider how the CCA4, unlike the CCA3, now readily
and extensively makes use of analogical reasoning.

A “cognitive cycle” is one cycle of the sensory input data entering the Input Sensory
Vectors Shaping Modules, passing through the various modules of the architecture, and
sending an output to the Output Vector Association Module and then on to the Output
Vector Shaping Module, where it becomes translated into a physical output. Then, in the
next cognitive cycle, this repeats again—sensory inputs enter the Input Sensory Vectors
Shaping Modules and proceed through the architecture, eventually to the Output Vector
Shaping Module, causing a motor (i.e., physical) output. Cognitive cycles are well estab-
lished in cognitive architectures (e.g., LIDA architecture [26]), in which the environment is
perceived, processing occurs, and then there is an output action. While a simple decision
may occur in one cognitive cycle, more sophisticated cognitive abilities are biologically
believed to be composed of a number of cognitive cycles.

As will be shown below, in some cognitive cycles, there is no output; instead, the
intermediate results produced by the Navigation Module (Figure 1), where an operation
occurred on what is termed the “working navigation map” (which is the navigation map
of interest at that moment), are transmitted back to the Input Sensory Vectors Association
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Modules. In the subsequent cognitive cycle, the actual sensory inputs from the environ-
ment are ignored and, instead, the intermediate results stored in the Input Sensory Vectors
Association Modules are propagated to the Navigation Module as if they are the sensory
inputs. As such, there is further processing of the intermediate results in this new cognitive
cycle. This can continue for a number of further cognitive cycles until there is an output
transmitted to the Output Vector Association Module to the Output Vector Shaping Module
to a real-world motor action. This is shown by Schneider [19–22] as a mechanism by which
a navigation-based system could evolve with relatively few evolutionary changes from a
system with pre-causal abilities to a system with the ability for full causal processing. By
feeding back and re-operating on the intermediate results from the Navigation Module
(where operations on the navigation map of interest at that moment are occurring), the ar-
chitecture can formulate and explore different possible causes and effects of actions [19–22].
This is discussed below in the description of the CCA4.

2.1. Overview of the Navigation Maps

The “navigation maps” used in the architecture are (arbitrarily sized) 6 × 6 × 6 arrays
holding spatial information about what is in the external environment (although this
can be, and is, co-opted to represent internal higher-level concepts). As an example, the
features water–line–solid in the (2,3,0), (2,4,0), and (2,5,0) cubes (each cube corresponding to a
coordinate) of a navigation map, for example, could be representing part of a river in those
similar locations in the external environment. A cube in a navigation map tends to hold
more primitive sensory features, rather than the word “water” or the word “solid.” There
will be some sort of representation of a primitive sensory feature (which will be some value
linking to the sensory feature) in a cube. With regard to more advanced representations,
such as, for example, representing the concept of a lake, rather than water, this is discussed
in [19,22,24]. In addition, the grounding problem is discussed below. The CCA4 takes a
very pragmatic approach to grounding—it is not an absolute requirement that a feature in
a cube be grounded; however, when it is not, there are other requirements to be met.

There are additional dimensions to the navigation maps which hold a variety of other
information for each navigation map, such as the binding of separate objects in a scene
(i.e., sensory scene involving not only visual inputs but also inputs to any other sensory
systems such as auditory, tactile, olfactory, and so on) as distinct objects, for example, or
operations to perform on a current or other navigation maps, for example. With regard to
spatial binding, in the example above, water–line–solid is stored in the (2,3,0), (2,4,0), and
(2,5,0) cubes of a navigation map. Perhaps this navigation map has, for example, also the
representation of a rock in the (2,3,0) as well as (3,3,0) cubes. The rock features need to
be bound as a continuous object distinct from the water, and another dimension of the
navigation map is used for that.

In another dimension of a navigation map, there can be operations specified which are
to be performed on two cubes or the entire map of the navigation map. For example, if the
contents of one cube are greater than the contents of another cube, then the inferior cube’s
contents can be deleted to increase contrast. As well, operations can be specified on other
navigation maps. For example, an operation can specify to compare two navigation maps
for similarity, or, for example, to compare a navigation map to the millions of navigation
maps kept in the Causal Memory Module (Figure 1).

Some navigation maps are more dedicated to performing operations on other nav-
igation maps, and these maps are termed the “instinctive primitives” or the “learned
primitives.” Instinctive primitives are navigation maps which are already preprogrammed
and are included with a brand-new instantiation of the architecture. For example, there
is an instinctive primitive which causes an action for the architecture to change direction
away from a body of water, i.e., so that the architecture avoids bodies of water. Learned
primitives, on the other hand, are navigation maps which the architecture learns from
experience involving operations to perform on other navigation maps.
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From Figure 1, note that certain modules such as the Learned Primitives Module,
the Instinctive Primitives Module, as well as the Goal/Emotion Module have a “D” in
the box representing the module. The D stands for developmentally sensitive, i.e., as the
architecture gains more experience, for example, the type of goal which is activated will
become different. Similarly, as the architecture gains more experience, the type of instinctive
primitives which become activated for a given circumstance will also be different from the
more immature architecture.

As is shown in the sections with the equations below, the input sensory data are also
stored in navigation maps of the same dimensions, as with most of the other navigation
maps. There are six main types of navigation maps used in the CCA4, the first five types
being of the same dimensions, and the first five allowing operations with each other:

i. Local Navigation Maps (LNM, defined in Equation (14) below);
ii. Multisensory Navigation Maps (NM, defined in Equation (23) below);
iii. Instinctive Primitive Maps (IPM, defined in Equation (23) below);
iv. Learned Primitive Maps (LPM, defined in Equation (23) below);
v. Purposed Navigation Maps;
vi. Module-Specific Navigation Maps.

The local navigation maps (LNMs) are navigation maps in each of the different sensory
modalities into which incoming sensory data is mapped. In each cognitive cycle, for
example, there will be a separate visual LNM and a separate auditory LMN created
(or re-used). These are mapped and stored within the Input Sensory Vectors Association
Modules shown in Figure 1.

The multisensory navigation maps (NMs), often simply referred to as navigation
maps, have information from various local navigation maps (LMNs) mapped onto them.
For example, in a cognitive cycle, the information in a visual LMN and the auditory LMN
can then be mapped onto a new or existing NM, which will thus have both visual and
auditory (and other sensory) information mapped onto it. Many millions or billions of
navigation maps can be stored within the Causal Memory Module (Figure 1). The currently
activated navigation map (thus, upon which operations can be performed) is termed the
‘working navigation map’ (WNM).

The instinctive primitive maps IPMs are navigation maps of the same dimensions
as the LMNs and NMs. However, they are used more so to direct operations on other
navigation maps than to store information about various features from the sensory inputs.
The instinctive primitive maps IPMs are pre-programmed and come with the architecture.
The learned primitive maps LPMs also direct operations on other navigation maps, but
these are learned and created by the Navigation Module (Figure 1) when new operations
are performed by the architecture.

The purposed navigation maps include a number of navigation maps derived from
navigation maps NM, however, are used for slightly different purposes, generally involving
only a small number of maps, unlike navigation maps NMs, which may number in the
millions or billions and are stored in the Causal Memory Module. These maps are discussed
in the sections below. Some of these navigation maps include:

Vector Navigation Maps (VNM, defined in Equation (48) below)
Audio-Visual Navigation Maps (AVNM, defined in Equation (48) below)
Visual Segmentation Navigation Maps (VSNM, defined in Equation (52) below)
Context Navigation Map (CONTEXT, defined in Equation (57) below)
Working Navigation Map (WNM, defined in Equation (58) below)

The module-specific navigation maps include navigation maps that are slightly dif-
ferent in structure and function than the main navigation maps discussed above. For
example, although not fully discussed below, the Sequential/Error Correcting Module’s
procedures make use of stored navigation maps that allow the rapid calculation of vector
motion through a matching process. For example, although the Output Vector Association
Module’s procedures would also seem to be mathematically symbolic, they too make use of
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stored navigation maps that allow rapid pre-shaping of the output signal. These navigation
maps are specialized and stay local to their modules—the navigation map addressing
protocol discussed below will not be able to access these specialized, local navigation maps.

2.2. Overview of the CCA4

Sensory data stream in from different sensory system sensors to the Input Sensory
Vectors Association Modules, where they are mapped onto the best matching (or new) local
navigation maps in each sensory modality. Then, in the Object Segmentation Gateway
Module, any objects detected are segmented, i.e., their spatial features are considered as
part of one object. In the example above, we described how the rock is considered a single
object. While this object is mapped in the three spatial dimensions, in another dimension in
the navigation map, the various features of the object are mapped together to indicate that
it is a distinct object. Then, the visual, auditory, and other sensory systems’ LNMs (local
navigation maps) are mapped onto the best matching (or new) multisensory navigation
maps NM from the Causal Memory Module. This newly updated navigation map then
becomes the navigation map the architecture is focused on, i.e., the “working navigation
map” WNM.

The local navigation maps will trigger navigation maps in the Instinctive Primitives
Module and the Learned Primitives Module. A best matching (i.e., to the content of the
segmented local navigation maps) instinctive primitive IPM or a best matching learned
primitive LPM is chosen and becomes the “working primitive” WPR. The working primi-
tive causes the Navigation Module to perform on the working navigation map the triggered
operations specified by the working primitive WPR. For example, perhaps the working
navigation map WNM should be compared against maps which exist within the Causal
Memory Module and then replaced with another navigation map. The primitives essen-
tially cause small operations to be performed on the working navigation map WNM (and
other navigation maps, as they are activated as the current working navigation map). Prim-
itives can be thought of as being similar to productions of other cognitive architectures or
as algorithms of more traditional computer systems. However, primitives are themselves
part of navigation maps, and primitives operate on other navigation maps.

Just as in the mammalian brain there are extensive feedback pathways throughout
the cortical structure, in the CCA4, there are also extensive feedback pathways. The extent
of these feedback pathways is only modestly reflected in Figure 1. Feedback pathways
allow the state of a downstream circuit to bias the recognition of upstream sensory inputs.
However, in the CCA4, the feedback pathways from the Navigation Module feeding back to
the Input Sensory Vectors Association Modules have been enhanced. As such, the working
navigation map currently active in the Navigation Module can be fed back and stored
temporarily in the Input Sensory Vectors Association Modules. Then, in the next cognitive
cycle, the working navigation map is fed back to the Navigation Module, where it will
undergo subsequent additional processing. As such, the working navigation map active
within the Navigation Module can represent the intermediate results of the processing of
particular sensory input information, which can then be processed repeatedly as needed to
arrive at the results required by a more complex problem.

In a cognitive cycle, if the sensory inputs are processed by the Input Sensory Vec-
tors Association Modules, then the Object Segmentation Gateway Module, and then the
Navigation Module, to result in a working navigation map upon which the operation of
a primitive (in every cognitive cycle an instinctive primitive or a learned primitive will
automatically operate on the active working navigation map) yields an actionable result
(i.e., a result which can be turned into an action), then that action is propagated on to
the Output Vector Association Module. Then, the action is propagated on to the Output
Vector Shaping Module, and then the action occurs in the real (or simulated) world. Then,
a new cognitive cycle begins, processing whatever new sensory inputs are presented to
the architecture.
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However, if the result of the operation of a primitive on the working navigation
map is not actionable, then, instead of propagating an action on to the Output Vector
Association Module, the feedback signal (i.e., the working navigation map) from the
Navigation Module to the Input Sensory Vectors Association Module is held in the Input
Sensory Vectors Association Module, with the cognitive cycle ending without an action. In
the following cognitive cycle, the newly sensed sensory data presented to the architecture
propagate as before to the various Input Sensory Vectors Association Modules, but they are
ignored. Instead, the working navigation map that was stored in the Input Sensory Vectors
Association Modules is propagated to the Object Segmentation Gateway Module and to the
Navigation Module. Another primitive can now operate on the working navigation map.
Thus, this effectively allows multiple operations on intermediate results until an actionable
result is obtained.

As noted above, this cognitive architecture provides an evolutionarily plausible mecha-
nism for the rapid evolution from pre-causal primates to fully causal humans. Moreover, as
noted above, this mechanism, at the same time, accounts for the negligible risk of psychosis
in pre-causal primates to a significant risk of psychotic-like malfunctioning in humans,
discussed in more detail by Schneider [18–21]. There is a biological basis for the existence
of cognitive cycles. Work by Madl and colleagues has estimated human cognitive cycles to
occur every 260–390 milliseconds [26].

2.3. Input Sensory Vectors Shaping Modules

As shown in Figure 1, Sensory Inputs for sensory modalities 1 . . . n are fed into
the Input Sensory Vectors Shaping Modules 1 . . . n. (Note: Due to the multiple types of
navigation maps as well as the multidimensional array notation, to reduce confusion of
which items “n” is counting, it is replaced by “θ_σ”, i.e., θ_σ represents the total number of
sensory systems (Equation (8)). Since there is one Input Sensory Vectors Shaping Module
for each one of the sensory modalities, there thus exists Input Sensory Vectors Shaping
Modules 1 . . . θ_σ.)

The sensory inputs for any particular sensory modality are detected as a 2D or 3D
spatial array of inputs, which vary with time. In the current computer simulation of the
CCA4, visual, auditory, and olfactory inputs are simulated. However, the sensory inputs
allowed can easily be expanded to additional sensory modalities.

The CCA4 is loosely brain-inspired, and, as such, we have decided not to physio-
logically more closely model the olfactory sensory pathways as they occur in the actual
mammalian brain. Rather, we have treated the olfactory inputs, as well as any future
synthetic senses (e.g., a radar or lidar sensory system), in a fashion similar to other senses in
the mammalian brain which proceed through the thalamus to the neocortex. Moreover, in
the CCA4, we did not model a split left–right brain which occurs in biology. For example, in
the brains of mammals, when some object being observed moves from the left to the right
visual hemifield, its representation then moves from the right to left cortical hemisphere, as
demonstrated in the research of Brincat and colleagues [27] showing the interhemispheric
movement of working memories.

In Equations (1)–(6), we see that the inputs from visual, auditory, olfactory, and other
possible sensory systems are stored in various size three-dimensional arrays that vary with
time, i.e., with every cognitive cycle, these values change. In Equation (9), the vector s(t)
contains the arrays which represent the sensory system inputs Sσ,t of the different sensory
systems. It is transformed into a normalized s’(t) (Equation (10)). All sensory system σ

inputs S’σ,t now exist in arrays with dimensions (m, n, o, p) (Equation (11)).
Arrays of dimension (m, n, o, p) will be the common currency of the CCA4. The spatial

dimensions are represented by m, n, and o, while p represents the extra hidden dimensions
the navigation map uses to represent segmentation (i.e., which features belong to which
objects), to represent actions to be performed, and to store and manipulate metadata.

S1 ∈ Rm_1×n_1×o_1 (1)
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S1,t = visual inputs(t) (2)

S2 ∈ Rm_2×n_2×o_2 (3)

S2,t = auditory inputs(t) (4)

S3 ∈ Rm_3×n_3×o_3 (5)

S3,t = olfactory inputs(t) (6)

σ = sensory system identification code ∈ N (7)

θ_σ = total number of sensory systems ∈ N (8)

s(t) = [S1,t, S2,t, S3,t, . . . , Sθ_σ,t] (9)

s’(t) = Input_Sens_Vect_Shaping_Modules.normalize(s(t)) =
[S’1,t, S’2,t, S’3,t, . . . , S’θ_σ,t]

(10)

S’σ,t ∈ Rm×n×o×p (11)

2.4. Input Sensory Vectors Association Modules

Figure 1 shows that the Input Sensory Vectors Association Modules, the Navigation
Module, the Object Segmentation Gateway Module, and the Causal Memory Module are
grouped together and are collectively termed here the “Navigation Module Complex”.
This complex is loosely inspired by the mammalian neocortex, and it stores and processes
navigation maps.

- Note that, for each sensory system σ, there is a different Input Sensory Vectors Associ-
ation Module. Vector s’(t), representing the normalized input sensory data for that
cognitive cycle, is propagated from the Input Sensory Vectors Shaping Modules to the
Input Sensory Association Modules;

- The local navigation map LNM is defined in Equation (14)—it is an array of the same
dimensions as the arrays used by all the navigation maps in the architecture. As
noted above, a “local” navigation map refers to a navigation map dedicated to one
sensory modality. These maps are stored within the Input Sensory Vectors Association
Modules. The vector all_mapsσ,t represents all existing LNMs (local navigation maps)
stored within a given sensory modality system σ, while LNM(σ,mapno,t) represents the
particular LNM with the address mapno (Equation (15));

- As shown in Equation (17) array S’σ,t is matched against all the local navigation
maps all_mapsσ,t held within the Input Sensory Vectors Association Module σ. For
example, the visual system processed inputs S’1,t are matched against all_maps1,t, i.e.,
all the LNMs (local navigation maps) stored within the visual Input Sensory Vectors
Association Module (Equations (15–17)).

- WNM’t−1 in Equation (17) refers to the working navigation map which has been fed
back from the Navigation Module in the previous cognitive cycle. Normally, this
feedback signal is used to bias the matching of the input sensory data. However,
as discussed above, in certain cases, the previous working navigation map can be
used as the next cognitive cycle’s input and thus effectively intermediate results are
re-processed by the navigation module. This is shown below. However, here, in
Equation (17), this is not occurring. The downstream WNM’t−1 (derived in a section
further below from WNM, which is defined in Equation (58), with both being of the
same structure and dimensions) is simply being used to influence the recognition of
the upstream sensory inputs;

- For reasons of brevity, named procedures are used in several equations in this paper
to summarize the transformations of the data. If details of the procedures are not
specified, then more details can be found in [24]. For example, as noted above, in
Equation (17), the procedure “match_ best_ local_ navmap” matches the sensory
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inputs against the stored local navigation maps in a particular sensory system and
returns the best-matched local navigation map;

- Then, in Equations (20) and (21), the best-matched LNM (σ,
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, t) (local navigation
map) is updated with the actually occurring sensory input S’σ,t. Note that, if the
best-matched local navigation map is very different than the sensory inputs, then,
rather than update the best-matched local navigation map, a new local navigation
map is created (Equation (21)). The updated local navigation map (Equation (20)) or
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2.5. Navigation Maps

The same array structure of dimensions m × n × o × p forms each of the main types of
navigation map. As noted above, there are five main types of navigation maps used in the
architecture (and a sixth type of module-specific navigation maps which are not discussed
in this section):

i. Local Navigation Maps (LNM, defined in Equation (14));
ii. Multisensory Navigation Maps (NM, defined in Equation (23));
iii. Instinctive Primitive Maps (IPM, defined in Equation (23));
iv. Learned Primitive Maps (LPM, defined in Equation (23));
v. Purposed Navigation Maps.

The local navigation maps (LNMs) were defined above in Equation (14). Local nav-
igation maps (LNMs) are navigation maps in each of the different sensory modalities in
the Input Sensory Vectors Association Modules (Figure 1). The normalized sensory input
vectors feed to the various Input Sensory Vectors Association Modules and are mapped
onto local navigation maps (LNMs). As shown above, in each cognitive cycle, for example,
there will be a separate visual LNM and a separate auditory LMN created (or re-used).
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The multisensory navigation maps (NMs), often simply referred to as navigation
maps, are defined below in Equation (23). As is shown in sections further below, the
multisensory navigation maps (NMs) have information from various local navigation
maps (LMNs) mapped onto them. For example, in a cognitive cycle, the information in
the visual LMN and the auditory LMN can then be mapped onto a new or existing NM,
which will thus have both visual and auditory (and perhaps other sensory) information
mapped onto it. Many millions or billions of navigation maps can be stored in the Causal
Memory Module (Figure 1), where they can be accessed in parallel during search operations.
The navigation map, currently activated and upon which operations can be performed,
is termed the “working navigation map” WNM, which has been discussed above and is
defined in Equation (58).

The instinctive primitives navigation maps (IPMs) as well as the learned primitive
navigation maps (LPMs) are defined below in Equation (23). The instinctive primitives
(i.e., instinctive primitive navigation maps), or IPMs, and the learned primitives (i.e.,
learned primitive navigation maps), or LPMs, are navigation maps of the same dimensions
as the LMNs and NMs. However, they are used more so to direct operations on other
navigation maps than to store information about various features from the sensory inputs.
The instinctive primitive maps are pre-programmed and come with the architecture. The
learned primitive maps LPMs also direct operations on the navigation maps somewhat
similar to the instinctive primitive maps IPMs, however these are learned and created by
the Navigation Module when new operations are performed by the architecture.

all_LNMst (Equation (25)) represents all of the local navigation maps’ LMNs in all
of the different sensory systems, i.e., in all the different sensory modules of the Input
Sensory Vectors Association Modules (Figure 1). all_navmapst (Equation (29)) is simply
a representation of all of the different addressable types of the navigation maps in the
architecture (i.e., the first four types in the lists above).

Each of the navigation maps (discussed at this point) has a unique address χ given
by Equation (32). cubefeaturesχ represents the feature values in a cube (that is, an x,y,z
location) in a navigation map anywhere in the architecture at address χ (Equation (35)).
cubeactionsχ,t represents the actions in a cube (i.e., x,y,z location) in a navigation map
anywhere in the architecture at address χ (Equation (36)). An action is a simple operation
that can be performed on a cube in any navigation map, e.g., compare a cube’s value
with its neighbor’s value. linkaddressesχ,t represents the linkaddresses in a cube (an x,y,z
location) within a navigation map anywhere in the architecture at address χ (Equation (37)).
A linkaddress is a link, i.e., a synapse, to another cube in a navigation map or to a cube in a
different navigation anywhere else in the architecture. One working navigation map WNM
can easily be swapped by another one by following a linkaddress to a new navigation map.

As shown in Equation (38), cubevaluesχ,t represents the contents of any cube (an x,
y, z location) in any navigation map (i.e., of the navigation maps discussed at this point),
which are all the features, actions, and linkaddresses which may be present in that cube.
As shown in Equation (39), this is the same as asking what the value of a particular cube in
a particular navigation map is.

The grounding problem asks the question of how the abstract data representations
of an artificial intelligence (AI) system can understand the world in which it operates.
Harnad [28] gives an example of a person with no background in Chinese attempting
to learn the Chinese language using only a Chinese to Chinese dictionary, whereby the
individual ends up going go from one string of Chinese symbols to a different string
of Chinese symbols with essentially no meaning being attached by the learner to these
symbols. These symbols are said to be “grounded” in yet other different Chinese symbols,
thereby, as this example illustrates, providing little meaning to the individual. If any
artificial system does not have grounding in the world in which it operates, then the system
will have a grounding problem in terms of giving meaning to the system’s internal data
structures which it is using to represent the world.
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A pragmatic approach is taken by the CCA4 towards the grounding problem. All the
occupied (i.e., have contents) cubes contained by a navigation map are required to have
at least one grounded feature or, otherwise, at least have a link to another cube anywhere
in the architecture, as shown by Equations (41) and (42). Links may go to the low-level
sensory features, to a higher-level concept, or to another navigation map. As Harnad points
out above, grounding is important. However, the CCA4 also allows navigation maps to
consider some features as being grounded via another abstract navigation map. In this
manner, the CCA4 can handle representations which essentially act as symbols created
during the repeated intermediate results’ processing, and thus not be required to link
these representations to some low-level sensory feature, which, at times, would simply not
make sense.

NMmapno ∈ Rm×n×o×p, IPMmapno ∈ Rm×n×o×p, LPMmapno ∈ Rm×n×o×p (23)

θ_NM = total NM’s ∈ N, θ_IPM = total IPM’s ∈ N, θ_LPM = total LPM’s ∈ N (24)

all_LNMst = [all_maps1,t, all_maps2,t, all_maps3,t, . . . , all_mapsθ_σ,t] (25)

all_NMst = [NM1,t, NM2,t, NM3,t, . . . , NMθ_NM,t] (26)

all_IPMst = [IPM1,t, IPM2,t, IPM3,t, . . . , IPMθ_IPM,t] (27)

all_LPMst = [LPM1,t, LPM2,t, LPM3,t, . . . , LPMθ_LPM,t] (28)

all_navmapst = [all_LNMst, all_NMst, all_IPMst, all_LPMst] (29)

modcode = module identification code ∈ N (30)

mapaddress = [modcode, mapno] (31)

χ = [mapaddress, x, y, z] (32)

feature ∈ R, action ∈ R (33)

Φ_feature = last feature in a cube; Φ_action = last action in a cube; Φ_χ
= last χ (i.e., address to link to) in a cube

(34)

cubefeaturesχ,t = [feature1,t, feature2,t, feature3,t, . . . , featureΦ_feature,t] (35)

cubeactionsχ ,t = [action1,t, action2,t, action3,t, . . . , actionΦ_action,t] (36)

linkaddressesχ ,t = [χ1,t , χ2,t , χ3,t, . . . , χΦ_χ,t] (37)

cubevaluesχ ,t = [cubefeaturesχ ,t, cubeactionsχ ,t, linkaddressesχ ,t] (38)

cubevaluesχ,t = all_navmapsχ,t (39)

linkaddressesχ,t = link(χ,t) (40)

grounded_feature = ∀feature: feature ∈ all_LNMsχ (41)

∀χ,t: all_navmapsχ,t = grounded_feature OR link(all_navmaps χ,t) 6= [ ]
OR all_navmapsχ,t = [ ]

(42)

2.6. Sequential/Error Correcting Module

While the binding problem is typically thought of in terms of spatial features, i.e., how
can the brain bind separately pieces of data [29], Schneider raises the issue of the need to
also bind temporal features [24]. In the earlier Causal Cognitive Architectures, if features
in a navigation map changed, as often occurs with motion, for example, then it became
burdensome and complex to process the large volumes of changing navigation maps.
However, unlike toy demonstration problems, in most real-world environments, temporal
changes are ubiquitous, whether for obvious real-world objects or for higher-level, more
abstract concepts, which can also be represented on navigation maps. In fact, mammalian
senses generally operate as a function of time. The auditory sensory system detects and
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represents changes in sounds with respect to time, the tactile senses measure changes in
touch with respect to time, and even the visual sensory system’s sensation of a picture
which may be static in terms of changes in light with respect to time, as the eyes perform
saccadic movements. Thus, in the Causal Cognitive Architecture [24], it was proposed
to bind temporal features as spatial features in the navigation maps by propagating the
sensory inputs in a parallel path via the Sequential/Error Correcting Module, as indicated
in Figure 1.

- s’_series(t) represents a time series of the recent sensory inputs (Equation (43)). In
Equations (44) and (45), the time series of the visual and auditory sensory inputs
are represented. The procedure “visual_inputs” (and similarly the procedure “au-
ditory_inputs”) actually does very little since the different sensory inputs are being
propagated in parallel to the Sequential/Error Correcting Module. However, in Equa-
tions (46) and (47), the procedures “visual_match” and ”aud_match” calculate vectors
representing the change in the time of the visual and auditory inputs;

- In Equation (48), two new types of navigation maps are defined, one termed a vec-
tor navigation map VNM and the other termed an audio-visual navigation map
AVNM, both possessing similar dimensions similar to the other navigation maps in
the CCA4. Then, the vector navigation map VNM binds the visual sensory motion
visual_motion (Equation (49)). Then, the vector navigation map, now termed VNM’,
binds, in addition, the auditory changes in auditory_motion (Equation (50)). The
resulting vector navigation map VNM” thus now contains a spatial representation
of the temporal changes in the visual and auditory input sensory data (the current
implementation and simulation of the CCA4 does not consider temporal changes in
other senses, although they could easily also be included). VNM” then propagates to
the Object Segmentation Gateway Module, and we examine below how it is bound
onto the rest of the input sensory data;

- As well as binding the auditory input sensory data along with the visual input
sensory data (useful if the architecture needs to function in the real world so the
location of sounds can better be handled), the auditory input sensory data undergoes
further processing in Equation (51) during the procedure “aud_match_process”, where
features of the auditory signal which could be useful to better recognize an incoming
sound (as well as allowing recognition of auditory communication) are mapped
onto an audio-visual navigation map, AVNM, and are propagated to the Navigation
Module complex;

- As discussed in the section below, another navigation map, termed the visual segmen-
tation navigation map, VSNM, is defined in Equation (52) but is actually created in the
Object Segmentation Gateway Module in an attempt to segment a visual scene into the
distinct objects present in the scene. VSNM then propagates into the Sequential/Error
Correcting Module, where a time series of VSNMs is created (Equation (53)) and a
motion vector visseg_motion is determined (Equation (54)). Then, this motion vector
is added as a spatial feature to the current VSNM, which is now termed VSNM’.
Thus, VSNM’ is a navigation map containing a visual sensory scene of the spatial
features of the segmented (i.e., detected) objects in the incoming visual input data as
well as the motion of those objects. VSNM’ then propagates back to the Navigation
Module complex.

s’_series(t) = [s’(t−3), s’(t−2), s’(t−1), s’(t)] (43)

visual_series(t) = SeqErrorC_Module.visual_inputs (s’_series(t)) (44)

auditory_series(t) = SeqErrorC_Module.auditory_inputs (s’_series(t)) (45)

visual_motion(t) = SeqErrorC_Module.visual_match (visual_series(t)) (46)

auditory_motion(t) = SeqErrorC_Module.aud_match (auditory_series(t)) (47)
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VNM ∈ Rm×n×o×p, AVNM ∈ Rm×n×o×p (48)

VNM’t = VNMt ∪ visual_motion(t) (49)

VNM”t = VNM’t ∪ auditory_motion(t) (50)

AVNMt = SeqErrorC_Module.aud_match_process (auditory_series(t)) (51)

VSNM ∈ Rm×n×o×p (52)

visual_segment_series(t) = [VSNMt−3, VSNMt−2,VSNMt−1, and VSNMt] (53)

visseg_motion(t) = SeqErrorC_Module.visual_match(visual_segment_series(t)) (54)

VSNM’t = VSNMt ∪ visseg_motion(t) (55)

2.7. Navigation Module Complex: Object Segmentation Gateway Module

The Object Segmentation Gateway Module tries to best take a sensory scene and then
segment it into distinct objects. Above, we gave the example of recognizing a rock as a
distinct continuous object from the water. In the current embodiment of the architecture,
only the visual local sensory map LNM’ (1,
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, t) is segmented (Equations (56)–(60)). However,
it is theoretically possible to segment any of the other sensory modalities.

• A visual local sensory map LNM’
textsubscript(1,
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, t) is segmented (i.e., recognize distinct objects) by the procedure
“visualsegment”, as shown in Equation (60), to yield the visual segment navigation
map, or VSNM. Essentially, in the VSNM visual segment navigation map, the extra
dimension p of the navigation map is used to hold information defining visual in-
formation as distinct objects. In the current simulation of the CCA4, the procedure
“visualsegment” simply attempts to match continuous lines with previous objects
stored in the visual local sensory LMN maps kept in the visual Input Sensory Vectors
Association Module;

• Equation (60) shows that, in addition to segmenting visual local navigation map
LNM’(1,
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, t) into the objects it contains (i.e., adding information to LNM’(1,
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, t) which
indicates which visual features have been detected as distinct objects), the visual and
auditory motion information contained in VNM” is applied to VSNM. In addition,
there is another parameter, CONTEXT, which can bias the segmentation procedure. In
the present implementation of the architecture, it is simply assigned to previous work-
ing navigation map WNMt−1 and is not fully used by the architecture at this point;

• The visual segment navigation map VSNM thus takes the incoming visual sensory
local navigation map LNM’(1,
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, t) and adds information indicating which visual fea-
tures make up distinct objects, as well as any motion information concerning the
visual scene and the auditory sensory inputs. The motion information is added to the
navigation map as a spatial feature, i.e., as a vector indicating direction and strength
of motion;

• The motion information VNM” refers to visual scene and the auditory sounds as a
whole. To further parse out motion information about the individual objects, VSNM
is then propagated onto the Sequential/Error Correcting Module, where the visual
segment navigation map VSNMt (Equation (60)) is transformed into VSNM’t (Equa-
tions (52)–(55)) and then contains visual sensory information segmented into different
objects as well as information about the motion for each of these objects. VSNM’ is
then propagated to the Navigation Module complex.

LNM’(1,
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, t) = lnmt [0] (56)

CONTEXT = ∈ Rm×n×o×p (57)

WNM = ∈ Rm×n×o×p (58)

CONTEXTt = WNMt−1 (59)
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VSNMt = Object_SegG_Module.visualsegment(LNM’(1,
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, t), VNM”t,
CONTEXTt)

(60)

2.8. Navigation Module Complex: Causal Memory Module

Now that the single sensory local navigation maps LMNs have been processed for
segmentation (in the case of the visual sensory input data) and motion (in the case of the
visual and auditory sensory input data), they are compared with the previously stored mul-
tisensory navigation maps stored in the Causal Memory Module. Equation (61) compactly
indicates this with the procedure “match_best_navmap”. Figure 2 shows an overview of
how the matching occurs. There is, in this figure, an example of a sensory scene involving
a river with water flowing through it and some rocks in the water, including a larger one
near the bottom part of the river shown. This is shown on the left side of the figure. The
local navigation maps LMNs created from the input sensory data from this sensory scene
are simply indicated as a “Local Visual Navigation Map”, a “Local Olfactory Navigation
Map”, and a “Local Auditory Navigation Map”.

• On the right side of the figure and to the bottom of the figure are Navigation Maps
NM A to D. These are 6 × 6 × 6 navigation maps NM; however, we use them as
6 × 6 × 0 two dimensional maps for the purpose of this illustration. Moreover, note
that there can be millions or billions of navigation maps NMs kept within the Causal
Memory Module. They will normally have proper addresses, as described in Equation
(32) above. We use the letters A to D for the sake of simplicity in Figure 2;

• The visual local navigation map LMN matches best with Navigation Map NM A
and Navigation Map NM B of all the navigation maps NMs in the Causal Memory
Module. Note that, while a visual local navigation map LMN contains only visual data,
the Navigation Maps NM A and B retrieved from the Causal Memory Module are
multisensory (i.e., may contain sensory data from any or all of the sensory modalities)
navigation maps.
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The auditory local navigation map LMN in this example make the best match with
Navigation Map NM C and Navigation Map NM A of all the navigation maps NMs
in the Causal Memory Module. The olfactory local navigation map LMN makes the
best match with Navigation Map NM D of all the navigation maps NMs in the Causal
Memory Module.

• The procedure “match_best_navmap” (Equation (61)) sees which of these navigation
maps match the closest as well as considering matches in more than one sensory
system (e.g., Navigation Map A NM matched for both the visual LMN and the
auditory LMN). Moreover, in the current implementation, more points are given to
visual LMN matches than the other sensory modalities that exist. In the example in
Figure 2, Navigation Map NM A is considered to be the best-matched navigation
match from the Causal Memory Module. Thus, Navigation Map NM A becomes the
working navigation map WNM (Equation (61));

• The working navigation map WNM at this point represents the best stored multi-
sensory navigation map which matched against the different sensory modality local
navigation maps constructed from the input sensory data. This is done because the
input sensory data may often be incomplete, and, as such, a more detailed navigation
map can be used via the matching and retrieving of a stored navigation map. This is
discussed in more detail in [24].

• The next step is to update the working navigation map WNM (which at this point is
a matched navigation map taken from the Causal Memory Module) with the actual
sensory inputs that occurred. actualt (Equation (63)) is a vector representing the
processed sensory inputs: VSNM’t containing objects and motion from the visual
sensory inputs, AVNMt containing audio information from the auditory sensory
inputs, and LNM’(3,
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, t) containing information from the olfactory sensory inputs.
The current implementation of the CCA4 uses visual, auditory, and olfactory input
senses; however, as noted above, additional sensory modalities can easily be added.
WNMt is then updated with the current sensory input and transformed into WNM’t
(Equations (65) and (66)). If the differences between the current input sensory data and
the matched WNM are small, then WNM will be updated (Equation (65)). However, if
there are too many differences, then, instead of using the matched working navigation
map WNM, there will be a new navigation map used to map the current sensory inputs
(Equation (66)). Future work may allow a combination of Equations (65) and (66),
depending on the novelty of actualt compared to the matched navigation map NM;

• An example of updating the working navigation map WNM and transforming it into
WNM’t (Equations (65) and (66)) is shown in Figure 3. On the left side of the page
is the actual sensory scene. On the right side of the page is the working navigation
map WNM, which is the best-matched navigation map NM A. The terms “olfactory”,
“auditory”, and “visual” represent spatial and temporal features of the sensory scene,
i.e., actualt (Equation (63)). These features are mapped onto the navigation map WNM.
Thus, note that WNM now shows the motion of object moving in the direction of
the vector mapped onto the navigation map. Note also that WNM now shows lines
representing the larger rock in the river. This updated version of WNM is now termed
the working navigation map WNM’, which the next sections below process.

WNMt = CausalMem_Module.match_best_navmap
(VSNM’t, AVNMt, LNM’(3,
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h’ = number of differences allowed to be copied onto
existing navigation map ∈ R

(62)

actualt = [VSNM’t, AVNMt, LNM’(3,

AI 2022, 3, FOR PEER REVIEW 9 
 

structure and dimensions) is simply being used to influence the recognition of the 

upstream sensory inputs; 

- For reasons of brevity, named procedures are used in several equations in this paper 

to summarize the transformations of the data. If details of the procedures are not 

specified, then more details can be found in [24]. For example, as noted above, in 

Equation (17), the procedure “match_ best_ local_ navmap” matches the sensory in-

puts against the stored local navigation maps in a particular sensory system and re-

turns the best-matched local navigation map; 

- Then, in Equations (20) and (21), the best-matched LNM(σ, ϓ, t) (local navigation map) 

is updated with the actually occurring sensory input S’σ,t. Note that, if the best-

matched local navigation map is very different than the sensory inputs, then, rather 

than update the best-matched local navigation map, a new local navigation map is 

created (Equation (21)). The updated local navigation map (Equation (20)) or the new 

local navigation map (Equation (21)) is stored within the particular sensory system 

Input Sensory Vectors Association Module. Moreover, it is propagated to the Object 

Segmentation Gateway Module (Figure 1); 

- The vector lnmt (Equation (22)) represents the best-matched and updated actual sen-

sory inputs local navigation maps LNM’(σ, ϓ, t) of all the different sensory systems of 

the CCA4. 

mapno = map identification code ∈ N (12) 

ϴ_LMN = total number of local navigation maps in a sensory system  

σ ∈ N 
(13) 

LNM(σ,mapno) ∈ Rm×n×o×p (14) 

all_mapsσ,t = [LNM(σ,1,t), LNM(σ,2,t), LNM(σ,3,t), …, LNM(σ, ϴ_LMN, t)] (15) 

ϓ = mapno of best matching map in a given set of navigation  

maps ∈ mapno 
(16) 

WNM = ∈ Rm×n×o×p   (58)  nb. used as feedback signal as discussed  

below 

LNM(σ, ϓ, t) = Input_Assocn_Moduleσ.match_best_local_navmap(S’σ,t, 

all_mapsσ,t, WNM’t−1) 

(17) 

h = number of differences allowed to be copied onto existing map ∈ R (18) 

new_map = mapno of new local navmap added to sensory system  

σ ∈ mapno 
(19) 

|differences (S’σ,t, LNM(σ, ϓ, t)) | ≤ h, ⇒ LNM’(σ, ϓ, t) = LNM(σ, ϓ, t) ∪ S’σ,t (20) 

|differences (S’σ,t, LNM(σ, ϓ, t)) | > h, ⇒ LNM’(σ, ϓ, t) = LNM(σ, new_map,t) ∪ S’σ,t (21) 

lnmt = [LNM’(1, ϓ, t), LNM’(2, ϓ, t), LNM’(3, ϓ, t), …, LNM’(ϴ_σ, ϓ, t)] (22) 

2.5. Navigation Maps 

The same array structure of dimensions m x n x o x p forms each of the main types 

of navigation map. As noted above, there are five main types of navigation maps used in 

the architecture (and a sixth type of module-specific navigation maps which are not dis-

cussed in this section): 

i. Local Navigation Maps (LNM, defined in Equation (14)); 

ii. Multisensory Navigation Maps (NM, defined in Equation (23)); 

iii. Instinctive Primitive Maps (IPM, defined in Equation (23)); 

iv. Learned Primitive Maps (LPM, defined in Equation (23)); 

v. Purposed Navigation Maps. 

, t), . . . , LNM’ (θ_σ,

AI 2022, 3, FOR PEER REVIEW 9 
 

structure and dimensions) is simply being used to influence the recognition of the 

upstream sensory inputs; 

- For reasons of brevity, named procedures are used in several equations in this paper 

to summarize the transformations of the data. If details of the procedures are not 

specified, then more details can be found in [24]. For example, as noted above, in 

Equation (17), the procedure “match_ best_ local_ navmap” matches the sensory in-

puts against the stored local navigation maps in a particular sensory system and re-

turns the best-matched local navigation map; 

- Then, in Equations (20) and (21), the best-matched LNM(σ, ϓ, t) (local navigation map) 

is updated with the actually occurring sensory input S’σ,t. Note that, if the best-

matched local navigation map is very different than the sensory inputs, then, rather 

than update the best-matched local navigation map, a new local navigation map is 

created (Equation (21)). The updated local navigation map (Equation (20)) or the new 

local navigation map (Equation (21)) is stored within the particular sensory system 

Input Sensory Vectors Association Module. Moreover, it is propagated to the Object 

Segmentation Gateway Module (Figure 1); 

- The vector lnmt (Equation (22)) represents the best-matched and updated actual sen-

sory inputs local navigation maps LNM’(σ, ϓ, t) of all the different sensory systems of 

the CCA4. 

mapno = map identification code ∈ N (12) 

ϴ_LMN = total number of local navigation maps in a sensory system  

σ ∈ N 
(13) 

LNM(σ,mapno) ∈ Rm×n×o×p (14) 

all_mapsσ,t = [LNM(σ,1,t), LNM(σ,2,t), LNM(σ,3,t), …, LNM(σ, ϴ_LMN, t)] (15) 

ϓ = mapno of best matching map in a given set of navigation  

maps ∈ mapno 
(16) 

WNM = ∈ Rm×n×o×p   (58)  nb. used as feedback signal as discussed  

below 

LNM(σ, ϓ, t) = Input_Assocn_Moduleσ.match_best_local_navmap(S’σ,t, 

all_mapsσ,t, WNM’t−1) 

(17) 

h = number of differences allowed to be copied onto existing map ∈ R (18) 

new_map = mapno of new local navmap added to sensory system  

σ ∈ mapno 
(19) 

|differences (S’σ,t, LNM(σ, ϓ, t)) | ≤ h, ⇒ LNM’(σ, ϓ, t) = LNM(σ, ϓ, t) ∪ S’σ,t (20) 

|differences (S’σ,t, LNM(σ, ϓ, t)) | > h, ⇒ LNM’(σ, ϓ, t) = LNM(σ, new_map,t) ∪ S’σ,t (21) 

lnmt = [LNM’(1, ϓ, t), LNM’(2, ϓ, t), LNM’(3, ϓ, t), …, LNM’(ϴ_σ, ϓ, t)] (22) 

2.5. Navigation Maps 

The same array structure of dimensions m x n x o x p forms each of the main types 

of navigation map. As noted above, there are five main types of navigation maps used in 

the architecture (and a sixth type of module-specific navigation maps which are not dis-

cussed in this section): 

i. Local Navigation Maps (LNM, defined in Equation (14)); 

ii. Multisensory Navigation Maps (NM, defined in Equation (23)); 

iii. Instinctive Primitive Maps (IPM, defined in Equation (23)); 

iv. Learned Primitive Maps (LPM, defined in Equation (23)); 

v. Purposed Navigation Maps. 
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NewNM ∈ Rm×n×o×p (64)

| differences(actualt, WNMt) | ≤ h’,⇒WNM’t = WNMt ∪ actualt (65)
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| differences(actualt, WNMt) | > h’,⇒WNM’t = NewNMt ∪ actualt (66)
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Figure 3. Different features from different sensory modalities of the sensory scene are here bound
to WNM (working navigation map), which represents a river. Note a moving object on the river.
A motion prediction vector represents the movement of the object. The larger rock in the river is
represented in the navigation map as well. The updated navigation map is now termed the working
navigation map WNM’.

2.9. Navigation Module Complex: Navigation Module

As noted above, some navigation maps are actually more dedicated to performing
operations on other navigation maps, and these maps are termed “learned primitives”
and “instinctive primitives.” Primitives can be thought of as being similar to productions
of other cognitive architectures or as algorithms of more traditional computer systems.
However, primitives are themselves part of navigation maps, and primitives operate on
other navigation maps.

• Equations (72) and (74) show that the Learned Primitives Module and Instinctive Prim-
itives Module receive the input sensory data as well as signals from the Goal/Emotion
Module and the Autonomic Module. In each cognitive cycle, at least one instinctive
primitive will always be triggered by the incoming sensory data and signals from the
Goal/Emotion Module and the Autonomic Module. In the current implementation, if
analogical reasoning is not used to select the best primitive (similar to way analogical
reasoning is used below to process intermediate results (Equations (86)–(91)), the pro-
cedure “match_best_primitive” (Equations (72) and (74)) scores the various primitives
triggered according to how strong the match was with the incoming sensory data and
signals from the Goal/Emotion Module and the Autonomic Module;

• In the current implement, if a learned primitive is triggered (often, it will not be, as the
store of learned primitives may be very limited when the architecture is new), then it
is used as the working primitive WPR. Otherwise, the triggered instinctive primitive
is used as the working primitive WPR (Equations (76) and (77));

• Thus, in each cognitive cycle, there will always be a working primitive WPR which
can operate on the working navigation map WNM’. In Equation (78), the procedure
“apply_primitive” applies the working primitive WPR on the working navigation map
WNM’ and produces an action which is the output of the Navigation Module. The
action vector should be distinguished from the definition of action in Equation (33),
where an action is a simple operation that can be potentially performed on a particular
(or multiple) cube (i.e., x, y, z location) within a navigation map. For example, if
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an agent using the architecture is moving towards a body of water, and there is an
instinctive primitive to avoid water, then, in this example, the action output could, for
example, be to change direction;

• If the action vector produced contains the word or equivalent for “move”, then this is
a valid output, and it will be propagated to the Sequential/Error Correcting Module
and the Output Vector Association Module (Figure 1) (Equation (80)). The procedure
“motion_correction” will adjust the output motion for the existing motions of the
objects in a scene (Equation (82)). Then, the Output Vector Association Module will
apply this output motion correction and build up an output_vector’ (Equation (83))
which specifies in more detail what motions are expected from the agent using the
architecture. output_vector’ is propagated onwards to the Output Vector Shaping
Module. This module directly controls the actuators producing the output action;

• If the action vector produced does not contain the word or equivalent for “move”,
then this is not an actionable output. As Equation (84) shows, in such a case, the
working navigation map WNM’ will instead be sent back to the Input Sensory Vectors
Association Modules. In the next cognitive cycle, the Input Sensory Vectors Association
Modules will automatically treat these intermediate results as if they are LMNs of
new sensory inputs and automatically propagate them to the Navigation Module
complex (Equation (85)).

There can be repeated processing of the intermediate results of the Navigation Mod-
ule, as shown in Equations (84) and (85). Once an actionable result is reached, then the
action can be propagated to the output modules, and, in the next cognitive cycle, new
sensory input data can be considered. However, if, despite the repeated processing of the
intermediate results, no actionable action is produced, then WPR can force termination
(i.e., WPR outputs a signal containing the word or equivalent for “discard”) (Equations (84)
and (85)). Similarly, even if processing a working navigation map produces an actionable
action (i.e., it contains the word “action” or equivalent), there may be circumstances where
WPR still wants the results processed again in the next cognitive cycle, and it will contain
the word “feedback” or equivalent (Equations (84) and (85)).

emotion ∈ R (67)

GOAL ∈ Rm×n×o×p (68)

autonomic ∈ R (69)

[emotiont, GOALt] = Goal/Emotion_Module.set_emotion_goal (autonomict, WNM’t) (70)

WIP ∈ Rm×n×o×p (71)

WIPt = Instinctive_Prims_Module.match_best_primitive (actualt, emotiont, GOALt) (72)

WLP ∈ Rm×n×o×p (73)

WLPt = Learned_Prims_Module.match_best_primitive (actualt, emotiont, GOALt) (74)

WPR ∈ Rm×n×o×p (75)

WLPt = [ ],⇒WPRt = WIPt (76)

WLPt 6= [ ],⇒WPRt = WLPt (77)

actiont = Navigation_Module.apply_primitive(WPRt, WNM’t) (78)

output_vector ∈ Rn’ (79)

actiont = “move*”,⇒ output_vectort = OutVect_Module.action_to_output(actiont, WNM’t) (80)

motion_correction ∈ R2 (81)
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actiont = “move*”,⇒ motion_correctiont = SeqErrorC_Module.motion_correction
(actiont, WNM’t, visual_series(t))

(82)

output_vector’t = OutVector_Module.apply_motion_correction
(output_vectort, motion_correctiont)

(83)

(actiont 6= “move*” and WPRt 6= [“discard*”]) or WPRt = [“feedback*”],⇒
Navigation_Module.feedback_store_wnm(WNM’t)

(84)

(actiont−1 6= “move*” and WPRt−1 6= [“discard*”]) or WPRt−1 = [“feedback*”],⇒
∀σ: LNM(σ,
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3. Analogical Reasoning in the CCA4

Previously, we went through an overview of the functioning of the Causal Cognitive
Architecture 4 (CCA4), largely considering the functionality already present within the
older Causal Cognitive Architecture 3 (CCA3) [24]. In this major Section 3, we now consider
how the CCA4, unlike the CCA3, readily and extensively makes use of analogical reasoning,
not to solve specialized analogy human intelligence tests, for example, but rather as a core
mechanism of the architecture.

3.1. The Problem of Toy Problems

• A toy problem is a simplified problem that removes the many complexities of the real
world so that research work can focus on what are thought to be the main challenges
and allow researchers to give more concise and exact solutions [30]. Unfortunately,
while solutions to toy problems may appear close to a solution of the real-world
problem which would seem to simply require a scaling up of the toy problem solution,
often this is not the case;

• The Causal Cognitive Architecture 1 (CCA1), involving many of the same characteris-
tics shown in the CCA4 above, demonstrated the use of navigation maps to produce
pre-causal behavior. Then, when the feedback pathways from the Navigation Module
back to the Input Sensory Vectors Associations Modules were enhanced to enable
re-processing of the Navigation Module’s intermediate results (similar to Equations
(84) and (85) above), it was able to demonstrate full causal behavior [22]. For example,
Figure 4 shows a gridworld forest where the architecture (i.e., the CCA1) is to direct an
agent to find the lost hiker in the forest. The architecture does not have the information
of Figure 4 but must build up an internal map of the external world, which it is starting
to do in Figure 5. If the CCA1 moves to the square “forest” just north of the “wtrfall”
(waterfall) square, it needs to make a decision about its next move. It has an instinctive
primitive that avoids deep bodies of water and thus inhibiting it from moving west
to the square “lake.” It has already explored the northeast and thus wants to explore
south now to look for the lost hiker. It is able to cross rivers (no instinctive primitives
are activated by rivers) and so it moves to the square “wtrfall” with fast moving but
shallow water. Unfortunately, the fast-moving water sweeps it over the cliff of the
waterfall, and it becomes damaged, thus failing at its mission;

• If a brand new CCA1 architecture/agent (if the previous one is used, it will now
have an associative memory not to enter fast-moving rivers) is now in the same
situation, but full feedback (i.e., similar to Equations (84, 85)) is active, then there
is more advantageous causal behavior. The new CCA1 architecture/agent has not
encountered a waterfall previously. However, {“flowing fast” + “noise”} + {“water”}
will trigger inside the Instinctive Primitives Module the primitive {“push”}. Then,
the Navigation Module transmits {“push”} + {“water”} back to the Input Sensory
Vectors Association Modules, where it is used as the input for the next cognitive
cycle. {“water”} + {“push”}, when re-processed, triggers an instinctive primitive which
retrieves a navigation map of where the CCA1 is being pushed under water. This is
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re-processed in the next cognitive cycle and triggers an instinctive primitive to stay
away and change direction. Thus, the new CCA1 architecture/agent changes direction
and moves east to the square “forest” and avoids the “wtrfall” square.
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Figure 5. Internal Map which the CCA1 architecture/agent starts constructing of the external
gridworld it is immersed in. * need to be explored.

The CCA1 was able to show that a system of navigation maps could produce intel-
ligent, causal behavior, albeit on toy problems. Thus, it was thought that, perhaps by
programming a larger repertoire of instinctive primitives, tweaking some algorithms, and
improving the implementation, that the CCA1 could truly start solving more challeng-
ing real-world problems. However, it soon became clear that, in the architecture of the
CCA1 (which is different than the CCA4 architecture shown in Figure 1), there was an
issue in fusing together input sensory features. As the sensory environment became even
slightly larger compared to the toy environment of the gridworld with the lost hiker, there
developed a combinatorial explosion of the complexity needed for the processed vector
which was transmitted to the Navigation Module. To overcome this issue, the Causal
Cognitive Architecture 2 (CCA2) was designed, wherein sensory inputs are bound onto
navigation maps, rather than produce a signal to send to the Navigation Module for later
processing [23,24].



AI 2022, 3 453

• The spatial binding solution of the CCA2 seemed to work well on toy problems and
also on some larger problems that started approaching real-world problems. However,
the CCA2 only worked well if the problems and the world was static. Once there was
a change in motion or a change in the environment, a massive number of navigation
maps needed to be processed for even small problems (e.g., 30 navigation maps per
second times 10 s was 300 full navigation maps to process and make sense of versus a
single navigation map for static problems);

• In most real-world environments, changes in time are ubiquitous. To overcome this
issue, the Causal Cognitive Architecture 3 (CCA3) was created, where sensory inputs
are also bound for temporal features [24]. Binding was done in a spatial fashion (e.g.,
Equations (49) and (50) above). Thus, instead of 300 full navigation maps of a changing
world being used to process in the example above, there was only the need to process
a single navigation map with time and space bound onto the navigation map;

• The solution provided by the CCA3 seemed to overcome previous problems and
seemed to more genuinely offer the hope that, if the system was made more robust (e.g.,
create a larger library of instinctive primitives, improve some algorithms, improve the
implementation), then it would be able to handle real-world problems with intelligent
causal behavior. However, it soon became apparent that creating a large enough
library of instinctive primitives to deal with the many challenges of environments
even modestly larger than a toy environment was challenging. Unlike the toy example
above of avoiding the waterfall in the gridworld, for many problems slightly more
advanced, the CCA3 simply was not able to activate the instinctive primitives that
would even be useful for the problem at hand, even if the intermediate results were
re-processed hundreds of times.

3.2. The Causal Cognitive Architecture 4 (CCA4)

As noted earlier, in the CCA4 the local navigation maps LMNs for each of the sensory
systems, which in the CCA3, were stored outside of the main repository of navigation
maps in separate Input Sensory Vectors Association Modules, are still stored in separate
Input Sensory Vectors Association Modules, though they are now more closely integrated
with each other and the multisensory navigation maps within the Causal Memory Module
(Figure 1). This more faithfully reflects biological cortical organization, where different
sensory modalities have their own regions [25]. However, given the ease of feedback and
feedforward pathways in this arrangement, with another circuit coopted as a temporary
memory, analogical reasoning emerges from the architecture.

In keeping with biological evolution, Equations (84) and (85) are duplicated and
modified using a slightly different pathway through the circuits. Equations (84) and (85)
are still valid if the working primitive WPR contains the signal “feedback.” In this case,
as before, the working navigation map WNM’ is fed back to the Input Sensory Vectors
Association Module (Equation (84b)). In the next cognitive cycle, this working navigation
map WNM’ is then fed forward (by co-opting the LMNs from the actual sensory inputs,
as before) to the Navigation Map (Equation (85b)), and there is processing again, possibly
by a different working primitive WPR. Thus, if specified by the working primitive WPR
(Equation (84b)), then this capability to re-process intermediate results, as such, still exists
in the CCA4.

However, in the CCA4, the newer duplicated and modified feedback pathways (Equa-
tions (86)–(91)) are now used as the default option for the re-processing of intermediate
results. As before, if the operation of the working primitive WPR on the working naviga-
tion map WNM’<x> does not result in an actionable output, i.e., actiont does not contain
the signal “move”, then the procedure “feedback_store_wnm” propagates the working
navigation map WNM’<x> back through the feedback pathways to temporarily be stored in
the Input Sensory Vectors Association Modules (Equation (87))—this is the same as before.
(Please note that the angle brackets in Equations (87)–(91) have no effect on the variables—
they are simply there to help the reader follow the Humean induction by analogy that is
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occurring. Thus, WNM’<x> has the same meaning as WNM’, other than pointing out to the
reader that the values in WNM’ at this point represent x in the induction that is occurring.)

In Equation (86), a temporary navigation map tempmem has been defined. Unlike
other long term storage navigation maps NM being saved within the Causal Memory
Module or the long term storage local navigation maps LMN being saved long-term in
their respective Input Sensory Vectors Association Modules, tempmem is a navigation map
in which the Navigation Module can store a navigation map temporarily and then easily
read it back. In Equation (88), we see that the working navigation map WNM’<x> is also
compared with the navigation maps in the Causal Memory Module, with the best-matched
navigation map being copied to tempmem<x>.

The procedure “next_map1” in Equation (89) looks at the most recently used linkad-
dress (Equation (37)) for the working navigation map tempmem<x>. The navigation map to
which WNM’<x> (or related navigation map tempmem<x> if the best matching in Equation
(88) resulted in a slightly different navigation map) most recently linked to now becomes
WNM’<y> (Equation (89)). As noted above, the angle brackets have no special meaning
other than to help the reader follow the induction by analogy that is occurring.

In Equation (90), the working navigation map WNM’<y> subtracts the navigation map
in tempmem<x>, with the result going to a new working navigation map WNM’<B>.

Then, in the next cognitive cycle, the original working navigation map WNM’<x> that was
stored within the Input Sensory Vectors Association Modules is propagated back to the Naviga-
tion Module; however, instead of overwriting the current (i.e., active) working navigation map
WNM’<B>, the “retrieve_and_add_intermediates” procedure causes this retrieved WNM’<x> to
be added to the existing working navigation map WNM’<B> (Equation (91)). We can call this
new working navigation map WNM’<x+B>. As noted above, the angle brackets have no special
meaning other than to help the reader follow the induction by analogy that is occurring.

Note that this very automatic mechanism has essentially stored into WNM’<x+B> (i.e., the
current version of WNM’ at the completion of Equation (91)) the action that occurred in the
past of a similar working navigation map in a situation that may possibly be analogical. This
analogical processing of the intermediate results often will produce an actionable output when
processed by the working primitive WPR. If not, the working primitive WPR can feed back the
result present in the navigation module for analogical re-processing again in the next cognitive
cycle, or for the previously described conventional re-processing, again in the next cognitive
cycle, or it can discard the intermediate results and process new actual sensory inputs in the next
cognitive cycle. A demonstration example is given in the next section.

From a neuroscience point of view, note that essentially WNM’<x> is being propagated
along an additional pathway—to the Input Sensory Vectors Association Modules, as before
(Equation (87)), as well as to the Causal Memory Module (Equation (88)). The subtract-
ing of two navigation maps in Equation (90) and the adding of two navigation maps in
Equation (91) can easily be done by neural circuits.

From an argument by analogy point of view, consider the following. In Equation (92),
we state that navigation map x has properties A1, A2, . . . , An. In Equation (93), we
state that navigation map y has properties A1, A2, . . . , An. In Equation (94), we state
that navigation map y also has property B. Therefore, in Equation (95), we conclude, by
induction by analogy, that navigation map x also has property B. In Equation (91), the
working navigation map WNM t’<x+B> now also has property B.

WPRt = [“feedback*”],⇒ Navigation_Module.feedback_store_wnm(WNM’t) (84b)

WPRt−1 = [“feedback*”],⇒
∀σ: LNM(σ,
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, t) = Input_Sens_Vectors_Assoc_Moduleσ.extract_σ (WNM’t−1) (85b)

tempmem ∈ Rm×n×o×p (86)

(actiont 6= “move*” and WPRt 6= [“discard*”] and WPRt 6= [“feedback*”])
or WPRt = [“analogical*”],

⇒ Navigation_Module.feedback_store_wnm(WNMt’<x>)
(87)
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⇒ tempmem<x> = CausalMem_Module.match_best_navmap(WNMt’<x>) (88)

⇒WNM t’<y> = Navigation_Module.next_map1 (tempmem<x>) (89)

⇒WNM t’<B> = WNM t’<y>—tempmem<x> (90)

(actiont−1 6= “move*” and WPRt−1 6= [“discard*”]) or WPRt−1 = [“analogical*”],
⇒WNM t’<x+B> = Navigation_Module.retrieve_and_add_intermediates

(91)

A1x & A2x & . . . Anx (92)

A1y & A2y & . . . Any (93)

By (94)

∴ Bx � (95)

4. CCA4 Demonstration Example

Results from the run of a computer simulation of the Causal Cognitive Architecture
4 (CCA4) are presented below. While navigation maps in the implementation of the
simulation are spatially 6 × 6 × 6; here they are used in a 6 × 6 × 0 mode which allows
easier display and printing of results.

The Abstraction and Reasoning Corpus (ARC) is a collection of analogies that uses
visual-only grids with colored boxes [31]. There are usually two to four solved training
instances of how one visual grid should be transformed into another one. Then, there is a
test example. The ARC examples only depend on basic innate knowledge a person would
largely have about objects. The examples do not depend on human experiences of the
world and stories humans are familiar with.

As a test example for the CCA4, a simplified visual scene is taken from the ARC.
However, we do not allow any immediate training, but rather assume that the CCA4
architecture being used has seen the versions of somewhat similar training examples in the
past. In real life, events do not happen as neatly as they do in analogy intelligence tests.
Thus, it is closer to a zero-shot test of learning, rather than the few-shot learning in the ARC.
In the test example below, the visual scene involves areas of water on a piece of otherwise
featureless landscape. There is no particular human meaning attached to this visual scene.
Indeed, a human would find it hard to suggest how this scene should be transformed.

The visual scene propagates through the CCA4 architecture, and the working naviga-
tion map WNM’<x> shown in Figure 6 is in the Navigation Module. The incoming sensory
data or this navigation map does not cause the triggering of any particular primitives, nor
actually any particular instinctive primitives. As a result, a default instinctive primitive is
triggered so that the working primitive WPR contains the signal “analogical”.
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No actionable output is produced, i.e., actiont 6= “move*”; rather, the working primi-
tive WPRt = [“analogical*”]. Thus, as shown in Equation (87), the current navigation map
WNM’<x> is fed back and saved within the Input Sensory Vectors Association Modules.
WNM’<x> is also fed into the Causal Memory Module, where a best-matching navigation
map is found. The match will usually return a navigation map very similar to WNM’<x>,
and while it would seem this step is not needed, a stored navigation map is more likely to
have different experiences than the present one has had, since there was already a difficulty
in processing the working navigation map. The best-matched navigation map is then stored
in the temporary memory tempmem<x> (Equation (88)). Figure 7 shows an output of the
simulation run at this point.
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(Equation (88)).

Then, the most recently used linkaddress in tempmem<x> accesses the navigation map
that it links to and is stored as the new working navigation map WNM’<y> (Equation (89)).
Figure 8 shows WNM’<y>, which represents the navigation map which occurred after the
best matched WNM’<x> working navigation map in the past and retrieved again now.
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Then, WNM’<x> working navigation map subtracts the value of tempmem<x> from it-
self (Equation (90)). As shown in Figure 9, this difference, WNM’<B>, essentially represents
the property ‘B’ that y possesses in the definition of analogy (Equation (94)). By induction
by analogy, WNM’<x> should also then possess this property. Thus, in Equation (91), the
working navigation map WNM’<x>, being saved in the Input Sensory Vectors Association
Modules, is added (as opposed to overwriting, as usually happens) to the current working
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navigation map WNM’<B>. The result is the new working navigation map WNM’<x+B>, as
shown in Figure 10.
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Equation (91) occurs in a new cognitive cycle, and a new (or possibly the previ-
ous) working primitive WPR will be operating on the current working navigation map
WNMt’<x+B>. Possibly, in this cycle, the squares with water are treated by the working
primitive WPR, for example, as a body of water, and, for example, the action output, as
directed by the WPR, is to change direction away from this body of water, for example.

While, in the Abstraction and Reasoning Corpus (ARC), the purpose of the output
is simply to give an answer to an intelligence test, in the CCA4, with limited instinctive
primitives, where the concept of intelligence test is not understood, the actions will be more
like the example given above, e.g., change direction. However, with sufficient instinctive
and learned primitives, the action output could be more appropriate for a test setting.

This example is simplified from the Abstraction and Reasoning Corpus. In order to
solve even the full easy analogies in the ARC test set, the CCA4 would require a larger
collection of instinctive primitives to deal with objects, geometrical relationships, and
object physics. The core analogical mechanism of the CCA4, i.e., Equations (86)–(91), is not
intended as a human or machine intelligence test analogy solver. While this mechanism can
assist in the solution of human or machine intelligence test analogies, along with a more
robust set of instinctive and learned primitives, its purpose is as a low-level mechanism
that helps the Navigation Module produce more useful action outputs.
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5. Discussion
5.1. A Navigation Map-Based AI—The Causal Cognitive Architecture 4 (CCA4)

Artificial neural networks (ANNs) can perform reinforcement learning and recognize
patterns at a human-like level of skill [32,33]; however, they perform inferiorly compared
to a child in terms of causal problem solving [14]. The Causal Cognitive Architecture 3
(CCA3) seemed to be able to allow causal problem solving [24], particularly for simple
toy problems. However, for even slightly more complex problems where there were no
instinctive or learned primitives exactly fine-tuned for the problem at hand, the CCA3
failed to readily produce useful action outputs.

Above, we have shown that the architecture of the CCA3 readily allows the addition
of small modifications to the architecture, in keeping with its intention to be evolutionarily
feasible, forming the Causal Cognitive Architecture 4 (CCA4). In the CCA4, there can
occur the production of analogous intermediate results in response to the feedback of the
Navigation Module when there is a failure to produce useful action outputs. Analogous
intermediate results fed back to the Navigation Module may not always yield a useful result.
The working primitive WPR must be applied to these results; moreover, sometimes, the
intermediate results are not suitable to form the output signal, but, instead, the results are
fed back again for re-processing in the next cognitive cycle, either by analogous processing
again or by the normal feedback processing present in the previous CCA3 architecture.
However, in many cases, the analogous intermediate results do in fact allow a useful action
output to occur, as in the case of the example in Figures 6–10 above.

As noted above, the analogous processing of feedback results from the Navigation
Module in the CCA4 is not intended to be a human or machine intelligence test anal-
ogy solver. Rather, analogical reasoning is used ubiquitously by the architecture in the
intermediate processing of sensory inputs to solve day-to-day problems the architecture
is encountering.

Logically, most of the times when the architecture is unsure of producing a reasonable
output in the Navigation Module and feeds back the intermediate results so that they can
be re-processed in the next cognitive cycle, inductive reasoning is required. While this
reasoning with time can become more statistical, details of the environment typically tend
to change so that the Humean component is essential. The analogical intermediate results
feedback mechanism (Equations (86)–(91)) used in the CCA4 incorporates both. The instinc-
tive and learned primitives essentially give the laws of environment or universe required
by Humean induction. However, the triggering of primitives can become statistical with
experience, and the analogical mechanism is essentially reflecting what happened before in
other, closely related cases. As noted above, an advantage of the CCA3 was that, by feeding
back and re-operating on the Navigation Module’s intermediate results, the architecture
can formulate and explore different possible causes and effects of actions [19–24]. The ana-
logical reasoning mechanism in the CCA4 further enhances the ability of the architecture
to formulate and explore different possible causes and effects of actions in an attempt to
produce an advantageous output signal.

5.2. Biological Insights—The Possible Ubiquity of Analogical Reasoning

Given that the CCA4 is a biologically/brain-inspired cognitive architecture (BICA), if
the emergence of analogical reasoning as a core mechanism appears to be possible with a
few changes as the CCA4 shows, it would suggest that analogical reasoning could have
easily evolved and formed a core mechanism in human thought. Rather than considering
analogical reasoning as a special ability that humans use when taking intelligence tests,
analogical reasoning may be ubiquitous in all our behaviors.

In fact, there has been much psychological evidence supporting analogical reasoning
as a core mechanism in human thought. Infants only thirteen months old are shown to
make use of analogy as an innate skill [34]. Hofstadter has argued strongly for the constant
use of analogies by the mind for everyday routines tasks [35]. While solving analogical
problems would appear to be a very conscious activity, functional magnetic resonance
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imaging (fMRI) shows that, in subjects noting similarities between a past event and a new
present analogous event, this often occurs unconsciously [36].

With regard to the evolution of analogical reasoning in the mammalian brain, there
is much evidence that, while full analogical reasoning may be restricted to humans (and
to some limited extent possibly by other primates [37]), other animals are able to perform
many but not all of the steps required to achieve to full analogical reasoning. For example,
Herrnstein [38] noted the ability of nonhumans to demonstrate four (discrimination of
stimuli, categorization by rote, open-ended categories, allowing a range of variation and
noting similarity giving the ability to form concepts) out of five (fuller relations between
concepts) steps necessary to form abstract relations. Krawczyk [39] reviewed areas of the
brain, particularly certain regions in the prefrontal cortex, involved in human relational
thinking and analogical reasoning. Work by Vendetti and Bunge [40] has shown that
relatively small changes in the human brain, particularly the strengthening of connections in
the lateral frontoparietal network (a key region related to relational thinking functionality),
compared to other primates, can possibly explain the large changes in the ability of humans
to perform more powerful abstract relational thinking, including analogical reasoning,
compared to other primates.

5.3. Improvements to the Different Learning Systems in the CCA4—Future Work

Learning, of course, is key to any cognitive architecture, as well as any biological brain.
The different navigation maps used by the Causal Cognitive Architecture 4 (CCA4) were
presented above in Section 2.5. All these navigation maps use slightly different learning
mechanisms. Generally, continual learning is possible for most aspects of the CCA4, just
as it is generally possible for most aspects of biological brains. Changing one navigation
map generally does not affect the entire network of navigation maps except for some of the
updated links. In continual learning, a cognitive architecture or an artificial intelligence
should be able to learn new information without causing substantial damage to its existing
information. Note that this is not the case for most deep neural networks, where modifying
the network on the fly can cause a catastrophic forgetting of learned information.

At present, the learning mechanisms implemented by the computer simulation of
the CCA4 (discussed above for the demonstration example) for the different navigation
maps are as simple as necessary in order to be in compliance with the equations above
and to allow the demonstration examples to run. Future work is planned to enhance these
learning algorithms. Below, in Table 1, we briefly review the learning mechanisms for the
main navigation maps presented above in Section 2.5 and review future work to improve
these mechanisms.
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Table 1. Future work for learning algorithms to implement for the main navigation maps.

Local Navigation Maps LNM

see equations, Figures 2 and 3, for how data is
written to these navigation maps
continual learning possible
future work to add in elements of
reinforcement learning and deep learning for
better novelty detection and writing data to the
map—maps with modifications to future
associated neural networks will undergo
training during sleep cycles

Multisensory Navigation Maps NM

see equations, Figures 2 and 3, for how data is
written to these navigation maps
continual learning possible
future work to add in elements of
reinforcement learning and deep learning for
writing data to the map—maps with
modifications to future associated neural
networks will undergo training during sleep
cycles

Instinctive Primitive Maps IPM

hard coded at present
continual learning not applicable
future work to create an instinctive primitive
editor
future work to better trigger different IPMs
depending on the maturation stage of the
architecture (i.e., better
developmentally-sensitive instinctive
primitives)
future work for refinement of instinctive
primitives via experiences, with possible
utilization of reinforcement learning and deep
learning for modification of the instinctive
primitives

Learned Primitive Maps LPM

programmatically coded in a simple fashion at
present to create and update learned primitives
for certain conditions in compliance with the
equations
future work for more robust learning of
learned primitives, with better detection of
which learned primitives to create or reinforce
and when to do so
future work to add in elements of
reinforcement learning and deep learning for
novelty detection and deciding which
experiences to turn into new LPMs
maps with modifications to future associated
neural networks will undergo training during
sleep cycles

With regard to the future work of adding elements of artificial neural networks to
some of the navigation map types, the simulation code is written in the Python language
and has been interfaced to the PyTorch machine learning framework. Use of conventional
neural networks will limit full continual learning; however, wake/sleep cycles have already
been implemented into the code; moreover, during sleep periods, there are opportunities
for the re-training of any conventional neural networks associated with particular types
or individual navigation maps. If conventional neural network implementation can be
used on an individual navigation map basis, i.e., using a different neural network for every
single navigation map, then re-training requirements are greatly reduced.



AI 2022, 3 461

Above, in Section 2.1, there is an overview of the many types of navigation maps used
in the Causal Cognitive Architecture 4. The “module-specific navigation maps” are the array
structures that are used by various modules for specific local purposes—the navigation
map addressing protocol discussed above will not be able to access these specialized, local
navigation maps. An example discussed above was the set of module-specific navigation
maps used by the Output Vector Association Module. As noted, although the Output
Vector Association Module’s procedures would seem to be mathematically symbolic, they
too make use of stored navigation maps that allow for the rapid pre-shaping of the output
signal. Thus, these module-specific navigation maps also require learning mechanisms. At
present, for the toy problems involved in the current simulation, many of these learning
mechanisms have been implemented to be as symbolically and programmatically simple
as required to be in compliance with the equations above. However, future work, of
course, will also consider associating conventional neural networks with these specialized
navigation maps to allow more robust learning.

Very specialized module-specific navigation maps also form the array structures
that pre-process the sensory input information in the Input Sensory Vectors Shaping
Modules. Again, for the toy problems, as well as the use of simulated sensory inputs in
the current simulation, many of these learning mechanisms have been implemented to
be as symbolically and programmatically simple as required to be in compliance with
the equations above. However, future work, of course, will also consider associating
conventional neural networks with these specialized navigation maps to allow, in the case
of the specialized module-specific navigation maps used for input data, not only more
robust learning, but more robust transformation of the sensory inputs.

5.4. Navigating and Benchmarking the Physical World—Future Work

At the time of writing, the computer simulation of the CCA4 utilizes simulated
sensory inputs. As noted from the previous section, the result of considering toy problems
in conjunction with the simulated sensory inputs more easily allowed the development of
the architecture and its computer simulation. However, given that the main inspiration
behind this biologically inspired cognitive architecture is the role of navigation maps in the
hippocampal structures of the mammalian brain which allows mammals to move about
and successfully navigate their environments [4–8], it begs the question of how well the
Causal Cognitive Architecture can actually navigate its physical world.

Work has begun on the Causal Cognitive Architecture 5 (CCA5) simulation program.
Some of the implemented learning mechanisms are being enhanced, as discussed in the
above section. In particular, work has started on enhancing the collection of instinctive
primitives. In order for the architecture to be able to better control an agent and navigate in
the real world, many additional and more robust intuitive physics primitives and intuitive
logic primitives are required. The inspiration for these instinctive primitives is biological
again. The works of Spelke and others [41–44] has shown that an infant’s brain is not a
tabula rasa, but rather contains an innate store of knowledge. This knowledge is quite
domain specific. For example, infants may perceive shadows, but they do not contain
innate knowledge about shadows. However, as Spelke [42] notes, within the group of
innate physics knowledge, infants possess an innate knowledge, for example, that an
object will affect another object’s motion only if the objects touch. Kinzler and Spelke [43]
organize this innate knowledge into five groupings and note that parts of it also apply to
nonhuman infants:

1. Objects

- cohesion (motion of an object is as a connected whole)
- continuity of motion on a path
- contact between objects

2. Agents

- motion of agents, unlike objects, for example, do not expect a continuous motion
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- agents expected to interact with other agents

3. Number

- can apply to different objects/agents, even if they are sensed differently
- can compare number representations, even adding and subtracting
- number representations become less precise the larger the numbers involved

4. Geometry

- distance, angle, relations between surfaces
- orientation with geometry

5. Us vs. Them

- reasoning about social group members

There is an extensive literature on autonomous navigation in the fields of robotics
and artificial intelligence [45,46]. There is also considerable work in the area of cognitive
architectures and spatial navigation [9,47]. While navigation in any system may come down
to the physics of objects, the behavior of agents, and geometric considerations, the reality
is that the mechanisms used by the Causal Cognitive Architecture are quite distinct from
most other approaches to autonomous navigation. The Causal Cognitive Architecture will
not be able to adequately navigate a real-world environment until a sufficient repository of
instinctive primitives are developed as well as enhancements to the learning mechanisms
for the array structures that pre-process the sensory input information in the Input Sensory
Vectors Shaping Modules discussed in the above section.

As a first step towards real-world navigation, work has begun on the Causal Cognitive
Architecture 5 (CCA5) simulation program to augment the instinctive primitives that will be
most useful for navigational activities. Moreover, the CCA5 simulation program now auto-
matically detects the presence of a standalone embedded computer board that allows sensor
inputs and actuator outputs to potential commercial mobile robot platforms. Arbitrary
real-world navigation test environments can be set up. A Causal Cognitive Architecture-
controlled mobile robot achieving navigation skills in the real world offers an excellent
opportunity for better experimentation with the architecture, including the benchmarking
of different versions of the architecture operating in the test navigation environments.

5.5. Navigating and Benchmarking the Abstract World—Future Work

As noted in the section above, the mechanisms used by the Causal Cognitive Architec-
ture are quite distinct from most other approaches to autonomous navigation. A drawback
of the Causal Cognitive Architecture is that an adequate set of instinctive primitives must be
developed before the architecture can even approach the most minimal real world naviga-
tion tasks. However, on the positive side, the architecture offers core causal and analogical
processing. Stimuli which it has not seen before can be processed by the application of
the instinctive primitives to the navigation map representing the input sensory data. In
addition, the architecture can navigate not only the physical world, but the abstract world
as well, using the same mechanisms.

As noted above, Schafer and Schiller suggest that both the hippocampus and the
neocortex contain maps of spatial items as well as non-spatial items including more abstract
features such as concepts [10]. In the demonstration example above, the CCA4 is presented
with an abstract input it has not seen before, yet it attempts to provide a response to the
input, in this case, by analogical reasoning. The demonstration example is taken from a
simplified example from Chollet’s Abstraction and Reasoning Corpus (ARC) of analogy
problems [31]. As the Causal Cognitive Architecture further is developed, it is proposed to
use Chollet’s corpus as a quantitative benchmark of the performance of the architecture.
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